精英家教网 > 高中数学 > 题目详情
11.已知无穷数列{an}的各项都是正数,其前n项和为Sn,且满足:a1=a,rSn=anan+1-1,其中a≠1,常数r∈N;
(1)求证:an+2-an是一个定值;
(2)若数列{an}是一个周期数列(存在正整数T,使得对任意n∈N*,都有an+T=an成立,则称{an}为周期数列,T为它的一个周期,求该数列的最小周期;
(3)若数列{an}是各项均为有理数的等差数列,cn=2•3n-1(n∈N*),问:数列{cn}中的所有项是否都是数列{an}中的项?若是,请说明理由,若不是,请举出反例.

分析 (1)由rSn=anan+1-1,利用迭代法得:ran+1=an+1(an+2-an),由此能够证明an+2-an为定值.
(2)当n=1时,ra=aa2-1,故a2=$\frac{1+ra}{a}$,根据数列是隔项成等差,写出数列的前几项,再由r>0和r=0两种情况进行讨论,能够求出该数列的周期.
(3)因为数列{an}是一个有理等差数列,所以a+a=r=2(r+$\frac{1}{a}$),化简2a2-ar-2=0,解得a是有理数,由此入手进行合理猜想,能够求出Sn

解答 (1)证明:∵rSn=anan+1-1,①
∴rSn+1=an+1an+2-1,②
②-①,得:ran+1=an+1(an+2-an),
∵an>0,∴an+2-an=r.
(2)解:当n=1时,ra=aa2-1,∴a2=$\frac{1+ra}{a}$,
根据数列是隔项成等差,写出数列的前几项:a,r+$\frac{1}{a}$,a+r,2r+$\frac{1}{a}$,a+2r,3r+$\frac{1}{a}$,….
当r>0时,奇数项和偶数项都是单调递增的,所以不可能是周期数列,
∴r=0时,数列写出数列的前几项:a,$\frac{1}{a}$,a,$\frac{1}{a}$,….
所以当a>0且a≠1时,该数列的周期是2,
(3)解:因为数列{an}是一个有理等差数列,a+a+r=2(r+$\frac{1}{a}$),
化简2a2-ar-2=0,a=$\frac{r+\sqrt{{r}^{2}+16}}{4}$是有理数.
设$\sqrt{{r}^{2}+16}$=k,是一个完全平方数,
则r2+16=k2,r,k均是非负整数r=0时,a=1,an=1,Sn=n.
r≠0时(k-r)(k+r)=16=2×8=4×4可以分解成8组,
其中只有$\left\{\begin{array}{l}{r=3}\\{k=5}\end{array}\right.$,符合要求,
此时a=2,an=$\frac{3n+1}{2}$,Sn=$\frac{n(3n+5)}{4}$,
∵cn=2•3n-1(n∈N*),an=1时,不符合,舍去.
an=$\frac{3n+1}{2}$时,若2•3n-1=$\frac{3k+1}{2}$,则:3k=4×3n-1-1,n=2时,k=$\frac{11}{3}$,不是整数,
因此数列{cn}中的所有项不都是数列{an}中的项.

点评 本题考查了数列递推关系、等差数列的定义与通项公式、数列的周期性性,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|2<x<4},B={x|(x-1)(x-3)<0},则A∩B为(  )
A.(1,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果函数f(x)是定义在(-3,3)上的奇函数,当0<x<3时,函数f(x)的图象如图所示,那么不等式f(x)cosx<0的解集是(  )
A.(-3,-$\frac{π}{2}$)∪(0,1)∪($\frac{π}{2}$,3)B.(-$\frac{π}{2}$,-1)∪(0,1)∪($\frac{π}{2}$,3)C.(-3,-1)∪(0,1)∪(1,3)D.(-3,-$\frac{π}{2}$)∪(0,1)∪(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若无穷等差数列{an}的首项a1<0,公差d>0,{an}的前n项和为Sn,则以下结论中一定正确的是(  )
A.Sn单调递增B.Sn单调递减C.Sn有最小值D.Sn有最大值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=-x3-x+sinx,若关于x的不等式$f(\frac{1}{x})+f(x-m)>0$在$[\frac{1}{2},2]$上有解,则实数m的取值范围是(  )
A.$m<\frac{5}{2}$B.$m>\frac{5}{2}$C.m<2D.m>2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.{an}是各项均为正数的等差数列,{bn}是等比数列,已知$\frac{a_1}{b_1}$=$\frac{a_2}{b_2}$=1,$\frac{a_3}{b_3}$=$\frac{8}{9}$,那么$\frac{a_4}{b_4}$=(  )
A.$\frac{20}{27}$B.$\frac{16}{27}$C.$\frac{4}{9}$D.$\frac{20}{27}$或$\frac{16}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a=log${\;}_{\frac{1}{3}}}$2,b=20.6,c=log43,则a,b,c的大小关系为(  )
A.a>b>cB.c>b>aC.b>c>aD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=alnx-ax(a≠0).
(I)讨论f(x)的单调性;
(Ⅱ)若f(x)+(a+1)x+1-e≤0对任意x∈[e,e2]恒成立,求实数a的取值范围(e为自然常数);
(Ⅲ)求证lnn!≤$\frac{(n+2)(n-1)}{2}$(n≥2,n∈N*).

查看答案和解析>>

同步练习册答案