精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=alnx-ax(a≠0).
(I)讨论f(x)的单调性;
(Ⅱ)若f(x)+(a+1)x+1-e≤0对任意x∈[e,e2]恒成立,求实数a的取值范围(e为自然常数);
(Ⅲ)求证lnn!≤$\frac{(n+2)(n-1)}{2}$(n≥2,n∈N*).

分析 (Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;
(Ⅱ)令F(x)=f(x)+(a+1)x+1-e,求出函数的导数,通过讨论a的范围,求出函数的单调区间,从而求出函数F(x)的最大值,进而确定a的范围即可;
(Ⅲ)令a=1则f(x)=lnx-x,根据函数的单调性得到lnx<x,对x取值,累加即可.

解答 解:(Ⅰ)${f^'}(x)=\frac{a}{x}-a=a(\frac{1}{x}-1)=a\frac{(1-x)}{x}$
当a>0时,f(x)的单调增区间为(0,1],单调减区间为[1,+∞);
当a<0时,f(x)的单调增区间为[1,+∞),单调减区间为(0,1];
(Ⅱ)令F(x)=f(x)+(a+1)x+1-e=alnx+x+1-e
F′(x)=$\frac{x+a}{x}$=0,若-a≤e,a≥-e,F(x) 在[e,e2]是增函数,
$F{(x)_{max}}=F({e^2})=2a+{e^2}-e+1≤0,a≤\frac{{e-1-{e^2}}}{2}$无解.
若e<-a≤e2,-e2≤a<-e,F(x)在[e,-a]是减函数;x∈[-a,e2]是增函数,
F(e)=a+1≤0,a≤-1,.$F({e^2})=2a+{e^2}-e+1≤0,a≤\frac{{e-1-{e^2}}}{2}$
∴-e2≤a≤$\frac{e-1{-e}^{2}}{2}$,若-a>e2,a<-e2,F(x)x∈[e,e2]是减函数,
F(x)max=F(e)=a+1≤0,a≤-1,∴a<-e2
综上所述a≤$\frac{e-1{-e}^{2}}{2}$ (或用参数分离法)
(Ⅲ)令a=1则f(x)=lnx-x
由(1)知f(x)在[1,+∞)上单调递减,又因为
f(1)<0,所以有lnx<x,
即ln2<2,ln3<3…lnn<n,
∴$lnn!≤\frac{(n+2)(n-1)}{2}$.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知无穷数列{an}的各项都是正数,其前n项和为Sn,且满足:a1=a,rSn=anan+1-1,其中a≠1,常数r∈N;
(1)求证:an+2-an是一个定值;
(2)若数列{an}是一个周期数列(存在正整数T,使得对任意n∈N*,都有an+T=an成立,则称{an}为周期数列,T为它的一个周期,求该数列的最小周期;
(3)若数列{an}是各项均为有理数的等差数列,cn=2•3n-1(n∈N*),问:数列{cn}中的所有项是否都是数列{an}中的项?若是,请说明理由,若不是,请举出反例.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.程序如图,要使此程序能运算出“1+2+…+100”的结果,需将语句“i=i+1”加在(  ) 
A.①处B.②处C.③处D.④处

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=$\left\{{\begin{array}{l}{{x^2}-1,(x>0)}\\{f(x+1)-1,(x≤0)}\end{array}}$,则f(-1)=(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定义在R上的函数f(x)满足f(-x)+f(x)=0,f(x+2)=-f(x),且x∈(-2,0)时,f(x)=2x+$\frac{1}{5}$,则f(log220)=(  )
A.1B.$\frac{4}{5}$C.-1D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{2}cosα}\\{y=\sqrt{2}+\sqrt{2}sinα}\end{array}\right.$(α为参数),M是C1上的动点,P点满足$\overrightarrow{OP}$=2$\overrightarrow{OM}$,P点的轨迹为曲线C2
(1)求C2的方程;
(2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=$\frac{π}{4}$与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知ax≤xlnx-x+1对任意x∈[$\frac{1}{2}$,2],恒成立,则a的最大值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,已知一个八面体的各条棱长均为1,四边形ABCD 为正方形,则下列命题中的假命题是(  )
A.不平行的两条棱所在的直线所成的角是60o或90o
B.四边形AECF是正方形
C.点A到平面BCE的距离为$\frac{\sqrt{6}}{3}$
D.该八面体的顶点不会在同一个球面上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设Sn是等差数列{an}的前n项和,且S5<S6=S7>S8,则下列结论错误的是(  )
A.d<0B.a7=0
C.S${\;}_{{9}_{\;}}$>S5D.S6和S7均为Sn的最大值

查看答案和解析>>

同步练习册答案