精英家教网 > 高中数学 > 题目详情
15.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{2}cosα}\\{y=\sqrt{2}+\sqrt{2}sinα}\end{array}\right.$(α为参数),M是C1上的动点,P点满足$\overrightarrow{OP}$=2$\overrightarrow{OM}$,P点的轨迹为曲线C2
(1)求C2的方程;
(2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=$\frac{π}{4}$与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.

分析 (1)利用代入法求C2的方程;
(2)求出射线θ=$\frac{π}{4}$与C1的交点A的极径为ρ1=2;与C2的交点B的极径为ρ2=4,即可得出结论.

解答 解:(1)设P(x,y),则由条件知M($\frac{x}{2}$,$\frac{y}{2}$),由于点M在C1上,所以$\frac{x}{2}$=$\sqrt{2}cosα$,$\frac{y}{2}$=$\sqrt{2}+\sqrt{2}sinα$
从而C2的方程为$\left\{\begin{array}{l}{x=2\sqrt{2}cosα}\\{y=2\sqrt{2}+2\sqrt{2}sinα}\end{array}\right.$(α为参数)-----6分
(2)曲线C1的极坐标方程为$ρ=2\sqrt{2}sinθ$,曲线C2的极坐标方程为$ρ=4\sqrt{2}sinθ$
射线θ=$\frac{π}{4}$与C1的交点A的极径为ρ1=2
射线θ=$\frac{π}{4}$与C2的交点B的极径为ρ2=4
所以|AB|=|ρ12|=2-----12分

点评 本题考查轨迹方程,考查极坐标方程的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=-x3-x+sinx,若关于x的不等式$f(\frac{1}{x})+f(x-m)>0$在$[\frac{1}{2},2]$上有解,则实数m的取值范围是(  )
A.$m<\frac{5}{2}$B.$m>\frac{5}{2}$C.m<2D.m>2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个底面为正方形的棱锥的三视图如图所示,则它的外接球的表面积为(  )
A.$\frac{13π}{4}$B.$\frac{{\sqrt{13}π}}{2}$C.13πD.$\sqrt{13}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={3,log2(a2+3a)},B={a,b,1},若A∩B={2},则集合A∪B=(  )
A.{1,2,3,4}B.{-4,1,2,3}C.{1,2,3}D.{-1,4,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=alnx-ax(a≠0).
(I)讨论f(x)的单调性;
(Ⅱ)若f(x)+(a+1)x+1-e≤0对任意x∈[e,e2]恒成立,求实数a的取值范围(e为自然常数);
(Ⅲ)求证lnn!≤$\frac{(n+2)(n-1)}{2}$(n≥2,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数y=f(x+2)的图象关于直线x=-2对称,且当x∈(0,+∞)时,f(x)=|log2x|,若a=f(-3),b=f($\frac{1}{4}$),c=f(2),则a,b,c的大小关系是(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)若函数f(x)=$\frac{ax+1}{x+b}$的图象的对称中心为(2,1),求实数a、b.
(2)已知函数y=f(x)的定义域为R,且当x∈R时,f(m+x)=-f(m-x)+2n恒成立,求证y=f(x)的图象关于点(m,n)对称.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.集合A={x|x2-5x+4<0},B={x||a-x|<1},则“B⊆A”是“a∈(2,3)”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|log2x<4},集合B={x||x|≤2},则A∩B=(  )
A.(0,2]B.[0,2]C.[-2,2]D.(-2,2)

查看答案和解析>>

同步练习册答案