精英家教网 > 高中数学 > 题目详情
20.设Sn是等差数列{an}的前n项和,且S5<S6=S7>S8,则下列结论错误的是(  )
A.d<0B.a7=0
C.S${\;}_{{9}_{\;}}$>S5D.S6和S7均为Sn的最大值

分析 利用结论:n≥2时,an=sn-sn-1,易推出a6>0,a7=0,a8<0,然后逐一分析各选项,排除错误答案.

解答 解:由S5<S6得a1+a2+a3+…+a5<a1+a2++a5+a6,即a6>0,
又∵S6=S7
∴a1+a2+…+a6=a1+a2+…+a6+a7
∴a7=0,故B正确;
同理由S7>S8,得a8<0,
∵d=a7-a6<0,故A正确;
而C选项S9>S5,即a6+a7+a8+a9>0,可得2(a7+a8)>0,
由结论a7=0,a8<0,显然C选项是错误的.
∵S5<S6,S6=S7>S8,∴S6与S7均为Sn的最大值,故D正确;
故选:C.

点评 本题考查了等差数列的前n项和公式和sn的最值问题,熟练应用公式是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=alnx-ax(a≠0).
(I)讨论f(x)的单调性;
(Ⅱ)若f(x)+(a+1)x+1-e≤0对任意x∈[e,e2]恒成立,求实数a的取值范围(e为自然常数);
(Ⅲ)求证lnn!≤$\frac{(n+2)(n-1)}{2}$(n≥2,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知样本数据3,2,1,a的平均数为2,则样本的标准差是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合M={x|x2-2x>0},集合N={0,1,2,3,4},则(∁RM)∩N等于(  )
A.{4}B.{3,4}C.{0,1,2}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义在R上的函数f(x)满足f(x)=f(x+2),当x∈[3,5]时,f(x)=2-|x-4|,则下列不等式一定成立的是(  )
A.f( cos$\frac{2π}{3}$)>f(sin$\frac{2π}{3}$)B.f(sin 1)<f(cos 1)
C.f(sin$\frac{π}{6}$)<f(cos$\frac{π}{6}$)D.f(cos 2)>f(sin 2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|log2x<4},集合B={x||x|≤2},则A∩B=(  )
A.(0,2]B.[0,2]C.[-2,2]D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知sinα=$\frac{{2\sqrt{2}}}{3}$,cos(α+β)=-$\frac{1}{3}$,且α,β∈(0,$\frac{π}{2}$),则sin(α-β)的值等于$\frac{10\sqrt{2}}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f(x)是R上的偶函数,且在(-∞,0)上是增函数,并满足f(2a2+a+1)<f(2a2-2a+3),则实数a的取值范围是a>$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.集合{x∈N*|x-3<2}用列举法可表示为(  )
A.{x<5}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5}

查看答案和解析>>

同步练习册答案