7£®ÒÑÖªÏòÁ¿$\overrightarrow{m}$=£¨cos$\frac{x}{2}$£¬-1£©£¬$\overrightarrow{n}$=£¨$\sqrt{3}$sin$\frac{x}{2}$£¬cos2$\frac{x}{2}$£©£¬É躯Êýf£¨x£©=$\overrightarrow{m}$•$\overrightarrow{n}$£®
£¨¢ñ£©Çóf£¨x£©ÔÚÇø¼ä[0£¬¦Ð]ÉϵÄÁãµã£»
£¨¢ò£©¡÷ABCÖУ¬ÈôA=$\frac{¦Ð}{3}$£¬BÊÇ¡÷ABCÖеÄ×î´óÄڽǣ¬Çóf£¨B£©µÄȡֵ·¶Î§£®

·ÖÎö £¨¢ñ£©ÔËÓÃÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾºÍ¶þ±¶½ÇµÄÕýÏÒ£¬ÓàÏÒ¹«Ê½£¬ÒÔ¼°Á½½Ç²îµÄÕýÏÒ¹«Ê½£¬ÔËÓÃÌØÊâ½ÇµÄº¯ÊýÖµ£¬¼´¿ÉµÃµ½ËùÇóÁãµã£»
£¨¢ò£©ÓÉÌâÒâ¿ÉµÃ$\frac{¦Ð}{3}$¡ÜB£¼¦Ð£¬ÔËÓÃÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬¿ÉµÃf£¨B£©µÄ×îÖµ£¬¼´¿ÉµÃµ½ËùÇó·¶Î§£®

½â´ð ½â£º£¨¢ñ£©ÏòÁ¿$\overrightarrow{m}$=£¨cos$\frac{x}{2}$£¬-1£©£¬$\overrightarrow{n}$=£¨$\sqrt{3}$sin$\frac{x}{2}$£¬cos2$\frac{x}{2}$£©£¬
¿ÉµÃº¯Êýf£¨x£©=$\overrightarrow{m}$•$\overrightarrow{n}$=$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$-cos2$\frac{x}{2}$=$\frac{\sqrt{3}}{2}$sinx-$\frac{1+cosx}{2}$
=sin£¨x-$\frac{¦Ð}{6}$£©-$\frac{1}{2}$£¬
ÓÉf£¨x£©=0£¬¿ÉµÃsin£¨x-$\frac{¦Ð}{6}$£©=$\frac{1}{2}$£¬
¼´x-$\frac{¦Ð}{6}$=2k¦Ð+$\frac{¦Ð}{6}$»ò2k¦Ð+$\frac{5¦Ð}{6}$£¬k¡ÊZ£¬
¼´Îªx=2k¦Ð+$\frac{¦Ð}{3}$»ò2k¦Ð+¦Ð£¬k¡ÊZ£¬
ÓÉx¡Ê[0£¬¦Ð]£¬¿ÉµÃf£¨x£©µÄÁãµãΪ$\frac{¦Ð}{3}$£»
£¨¢ò£©A=$\frac{¦Ð}{3}$£¬BÊÇ¡÷ABCÖеÄ×î´óÄڽǣ¬
¼´ÎªB¡Ý$\frac{¦Ð}{3}$£¬B¡Ý¦Ð-$\frac{¦Ð}{3}$-B£¬½âµÃ$\frac{¦Ð}{3}$¡ÜB£¼¦Ð£¬
Ôòf£¨B£©=sin£¨B-$\frac{¦Ð}{6}$£©-$\frac{1}{2}$£¬
ÓÉ$\frac{¦Ð}{6}$¡ÜB-$\frac{¦Ð}{6}$£¼$\frac{5¦Ð}{6}$£¬¿ÉµÃ$\frac{1}{2}$¡Üsin£¨B-$\frac{¦Ð}{6}$£©¡Ü1£¬
¼´Îª0¡Üf£¨B£©¡Ü$\frac{1}{2}$£¬
Ôòf£¨B£©µÄȡֵ·¶Î§ÊÇ[0£¬$\frac{1}{2}$]£®

µãÆÀ ±¾Ì⿼²éÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£¬ÒÔ¼°¶þ±¶½Ç¹«Ê½ºÍÁ½½Ç²îµÄÕýÏÒ¹«Ê½£¬¿¼²éÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èçͼ£¬µãA£¬BÔÚº¯Êýy=log2x+2µÄͼÏóÉÏ£¬µãCÔÚº¯Êýy=log2xµÄͼÏóÉÏ£¬Èô¡÷ABCΪµÈ±ßÈý½ÇÐΣ¬ÇÒÖ±ÏßBC¡ÎyÖᣬÉèµãAµÄ×ø±êΪ£¨m£¬n£©£¬Ôòm=£¨¡¡¡¡£©
A£®2B£®3C£®$\sqrt{2}$D£®$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®¶þÏîʽ£¨x-$\frac{1}{2{x}^{3}}$£©8µÄÕ¹¿ªÊ½Öг£ÊýÏîΪ£¨¡¡¡¡£©
A£®-7B£®7C£®-28D£®28

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=sin2x+2$\sqrt{3}$sinxcosx+sin£¨x+$\frac{¦Ð}{4}$£©sin£¨x-$\frac{¦Ð}{4}$£©£¬x¡ÊR£®
£¨1£©Çóf£¨x£©µÄ×îСÕýÖÜÆÚ£»
£¨2£©Èôf£¨x£©ÔÚÇø¼ä[-$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{2}$]ÉϵÄ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬²¢ÇÒS10£¾0£¬S11£¼0£¬¹ØÓÚÊýÁÐ{an}ÓÐÏÂÁÐÃüÌ⣺
£¨1£©¹«²îd£¼0£¬Ê×Ïîa1£¾0£»
£¨2£©S6×î´ó£»
£¨3£©a3£¾0£»
£¨4£©a6£¾0
ÉÏÊöÃüÌâÕýÈ·µÄÊÇ£¨1£©£¬£¨3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªÊýÁÐ{an}ΪÊ×ÏîΪaµÄµÈ²îÊýÁУ¬ÊýÁÐ{${a_{2^n}}$+2n}Êǹ«±ÈΪqµÄµÈ±ÈÊýÁУ¬Ôòq=1£¬»ò2£¬ÊµÊýaµÄȡֵ·¶Î§ÊÇa¡Ù-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÖÀһö÷»×Ó£¬ÖÀ³öµÄµãÊýΪ7µÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{6}$B£®$\frac{1}{7}$C£®1D£®0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®½âÏÂÁв»µÈʽ£º
£¨1£©$\frac{x-1}{x}$¡Ý0£®
£¨2£©$\frac{2{x}^{2}-4x-7}{-{x}^{2}+2x-1}$¡Ý-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖª¡÷ABCÖУ¬a£¬b£¬c·Ö±ðΪ½ÇA£¬B£¬CµÄ¶Ô±ß£¬Èô¡÷ABCµÄÃæ»ýS=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{4\sqrt{3}}$£¬Ôò½ÇC=$\frac{¦Ð}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸