精英家教网 > 高中数学 > 题目详情
19.掷一枚骰子,掷出的点数为7的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{7}$C.1D.0

分析 掷一枚骰子,掷出的点数为7为不可能事件,故其概率为O.

解答 解:掷一枚骰子,掷出的点数最大为6,不可能为7,故掷一枚骰子,掷出的点数为7为不可能事件,故其概率为O,
故选:D.

点评 本题考查了不可能事件的概率,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知|${\overrightarrow a}$|=$\sqrt{2}$,|${\overrightarrow b}$|=1,$\overrightarrow a$与$\overrightarrow b$的夹角为45°,则使向量(2$\overrightarrow a$-λ$\overrightarrow b$)与(λ$\overrightarrow{a}$-3$\overrightarrow b$)的夹角是锐角的实数λ的取值范围为$1<λ<6且λ≠\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.△ABC中,角A,B,C所对的边分别为a,b,c,
①若sinA>sinB,则B>A;
②若△ABC最小内角为α,则cosα≥$\frac{1}{2}$;
③存在某钝角△ABC,有tanA+tanB+tanC>0;
④若2a$\overrightarrow{BC}$+b$\overrightarrow{CA}$+c$\overrightarrow{AB}$=$\overrightarrow 0$,则△ABC的最小角小于$\frac{π}{6}$;
其中正确的命题是②④(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{m}$=(cos$\frac{x}{2}$,-1),$\overrightarrow{n}$=($\sqrt{3}$sin$\frac{x}{2}$,cos2$\frac{x}{2}$),设函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(Ⅰ)求f(x)在区间[0,π]上的零点;
(Ⅱ)△ABC中,若A=$\frac{π}{3}$,B是△ABC中的最大内角,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知圆锥的母线长为10cm,侧面积为60πcm2,则此圆锥的体积为96πcm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,直线l:(1+λ)x+(λ+2)y-6-3λ=0过定点A,已知圆C的半径为1,且圆心在直线y=2x-4上.
(1)若圆C经过点M(6,3),N(4,5),过点A作圆C的切线,若切点为E,F,求直线EF的方程;
(2)在条件(1)下,过点B($\frac{5}{2}$,$\frac{3}{2}$)作直线交圆C于P,Q两点,求|PQ|最小时直线的方程;
(3)若圆C上存在点Q,使|QA|=2|QO|,求Q点的轨迹方程,并求出圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知($\sqrt{x}$+$\frac{1}{2\root{4}{x}}$)n展开式中x的次数最大为4.
(1)求这个二项式的n值;
(2)求这个展开式的一次项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若10件产品中包含3件废品,今在其中任取两件,则在取出的两件中有一件是废品的条件下,另一件也是废品的概率是$\frac{2}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知命题p:2-c<x<2+c(c>0),命题q:x2-9x+18>0,如果命题p是q的充分不必要条件,则c的取值范围是(  )
A.(0,1)B.(0,1]C.[1,4]D.(4,+∞)

查看答案和解析>>

同步练习册答案