精英家教网 > 高中数学 > 题目详情
11.已知($\sqrt{x}$+$\frac{1}{2\root{4}{x}}$)n展开式中x的次数最大为4.
(1)求这个二项式的n值;
(2)求这个展开式的一次项.

分析 (1)利用展开式的通项公式可得展开式中x的次数最大为$\frac{2n}{4}$=4,由此求得这个二项式的n值.
(2)令展开式中x的次数等于1,求得r的值,可得这个展开式的一次项.

解答 解:(1)($\sqrt{x}$+$\frac{1}{2\root{4}{x}}$)n展开式的通项公式为 Tr+1=${C}_{n}^{r}$•2-r•${x}^{\frac{2n-3r}{4}}$,
由于展开式中x的次数最大为$\frac{2n}{4}$=4,故这个二项式的n=8.
(2)在展开式的通项公式 Tr+1=${C}_{n}^{r}$•2-r•${x}^{\frac{2n-3r}{4}}$=${C}_{8}^{r}$•2-r•${x}^{4-\frac{3r}{4}}$ 中,
 令4-$\frac{3r}{4}$=1,可得r=4,故这个展开式的一次项为T5=${C}_{8}^{4}$•2-4•x=$\frac{35}{8}$x.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.三棱锥的三视图如图所示,则该三棱锥的体积为(  )
A.$\frac{8}{3}$B.$\frac{4}{3}$$\sqrt{2}$C.$\frac{2\sqrt{5}}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知等差数列{an}的前n项和为Sn,并且S10>0,S11<0,关于数列{an}有下列命题:
(1)公差d<0,首项a1>0;
(2)S6最大;
(3)a3>0;
(4)a6>0
上述命题正确的是(1),(3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.掷一枚骰子,掷出的点数为7的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{7}$C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的虚轴的上顶点是A,右焦点是F,O为坐标原点,点P满足$\overrightarrow{AP}$=$\frac{1}{2}$$\overrightarrow{PF}$,若直线OP的倾斜角是60°,则该双曲线的离心率是(  )
A.$\sqrt{2}$B.2C.$\frac{4}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.解下列不等式:
(1)$\frac{x-1}{x}$≥0.
(2)$\frac{2{x}^{2}-4x-7}{-{x}^{2}+2x-1}$≥-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.首位数字是1,且恰有两个数字相同的四位数共有(  )
A.216个B.252个C.324个D.432个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若(2a-1)${\;}^{\frac{1}{3}}$>(2a-1)${\;}^{\frac{1}{2}}$,则实数a的取值范围是($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点为F(3,0),过点F且斜率为$\frac{1}{2}$的直线交椭圆于A,B两点.若AB的中点坐标为(1,-1),则E的方程为(  )
A.$\frac{x^2}{45}+\frac{y^2}{36}=1$B.$\frac{x^2}{36}+\frac{y^2}{27}=1$C.$\frac{x^2}{27}+\frac{y^2}{18}=1$D.$\frac{x^2}{18}+\frac{y^2}{9}=1$

查看答案和解析>>

同步练习册答案