| A. | $\frac{x^2}{45}+\frac{y^2}{36}=1$ | B. | $\frac{x^2}{36}+\frac{y^2}{27}=1$ | C. | $\frac{x^2}{27}+\frac{y^2}{18}=1$ | D. | $\frac{x^2}{18}+\frac{y^2}{9}=1$ |
分析 设A(x1,y1),B(x2,y2),代入椭圆的方程,两式相减,根据线段AB的中点坐标为(1,-1),求出斜率,进而可得a,b的关系,根据右焦点为F(3,0),求出a,b的值,即可得出椭圆的方程.
解答 解:设A(x1,y1),B(x2,y2),
则代入椭圆方程,两式相减可得$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{{a}^{2}}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{{b}^{2}}$=0,
∵线段AB的中点坐标为(1,-1),
∴$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{{b}^{2}}{{a}^{2}}$,
∵直线的斜率为$\frac{1}{2}$,
∴$\frac{{b}^{2}}{{a}^{2}}$=$\frac{1}{2}$,
∵右焦点为F(3,0),
∴a2-b2=9,
∴a2=18,b2=9,
∴椭圆方程为:$\frac{x^2}{18}+\frac{y^2}{9}=1$.
故选:D.
点评 本题考查椭圆的方程,考查点差法的运用,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (0,1] | C. | [1,4] | D. | (4,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2)∪(0,2) | B. | (-∞,-2)∪(2,+∞) | C. | (-2,0)∪(2,+∞) | D. | (0,2)∪(-2,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{1}{2}$,+∞] | B. | ($\frac{1}{2}$,1) | C. | ($\frac{1}{2}$,1] | D. | ($\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -log20122011 | B. | -1 | C. | (log20122011)-1 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com