精英家教网 > 高中数学 > 题目详情
9.若函数y=f(x)的定义域是[0、1],则函数g(x)=$\frac{f(x)}{\sqrt{x-\frac{1}{2}}}$的定义域为(  )
A.[$\frac{1}{2}$,+∞]B.($\frac{1}{2}$,1)C.($\frac{1}{2}$,1]D.($\frac{1}{2}$,+∞)

分析 根据函数f(x)的定义域以及二次根式的性质得到关于x的不等式组,解出即可.

解答 解:由题意得:
$\left\{\begin{array}{l}{0≤x≤1}\\{x-\frac{1}{2}>0}\end{array}\right.$,解得:$\frac{1}{2}$<x≤1,
故选:C.

点评 本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.首位数字是1,且恰有两个数字相同的四位数共有(  )
A.216个B.252个C.324个D.432个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}、{bn}、{cn}满足(an+1-an)(bn+1-bn)=cn(n∈N*).
(1)设cn=2n+n,an=n+1,当b1=1时,求数列{bn}的通项公式;
(2)设cn=n3,an=n2-8n,求正整数k,使得一切n∈N*,均有bn≥bk

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点为F(3,0),过点F且斜率为$\frac{1}{2}$的直线交椭圆于A,B两点.若AB的中点坐标为(1,-1),则E的方程为(  )
A.$\frac{x^2}{45}+\frac{y^2}{36}=1$B.$\frac{x^2}{36}+\frac{y^2}{27}=1$C.$\frac{x^2}{27}+\frac{y^2}{18}=1$D.$\frac{x^2}{18}+\frac{y^2}{9}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知F1、F2分别为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,且右焦点F2的坐标为(1,0),点P(1,$\frac{\sqrt{2}}{2}$)在椭圆C上,O为坐标原点.
(1)求椭圆C的标准方程;
(2)若过点F2的直线l与椭圆C交于A,B两点,且|AB|=$\frac{4}{3}$$\sqrt{2}$,求直线l的方程;
(3)过椭圆C上异于其顶点的任一点Q,作圆O:x2+y2=1的两条切线,切点分别为M,N(M,N不在坐标轴上),若直线MN在x轴、y轴上的截距分别为m、n,那么$\frac{1}{{m}^{2}}$+$\frac{2}{{n}^{2}}$是否为定值?若是,求出此定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知椭圆的长轴长是短轴长的2倍,则椭圆的焦距与短轴长之比为(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-4lnx,g(x)=-2x2+12x.
(1)求f(x)在点(1,f(1))处的切线方程;
(2)求函数f(x)的单调区间和极值;
(3)若函数f(x)与g(x)在区间(a,a+1)上均为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设f′(x)是奇函数f(x)(x∈R)的导函数,f(-2)=0,当x>0时,xf′(x)-f(x)>0,则使得f(x)>0成立的x的取值范围是(-2,0)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图是函数$f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<\frac{π}{2})$的图象的一部分.
(1)求函数y=f(x)的解析式.
(2)若$f(α+\frac{π}{12})=\frac{3}{2},α∈[\frac{π}{2},π],求tan2α$.

查看答案和解析>>

同步练习册答案