精英家教网 > 高中数学 > 题目详情
18.设f′(x)是奇函数f(x)(x∈R)的导函数,f(-2)=0,当x>0时,xf′(x)-f(x)>0,则使得f(x)>0成立的x的取值范围是(-2,0)∪(2,+∞).

分析 构造函数g(x),利用g(x)的导数判断函数g(x)的单调性与奇偶性,求出不等式的解集即可.

解答 解:设g(x)=$\frac{f(x)}{x}$,则g(x)的导数为:
g′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$,
∵当x>0时总有xf′(x)-f(x)>0成立,
即当x>0时,g′(x)>0,
∴当x>0时,函数g(x)为增函数,
又∵g(-x)=$\frac{f(-x)}{-x}$=$\frac{-f(x)}{-x}$=$\frac{f(x)}{x}$=g(x),
∴函数g(x)为定义域上的偶函数,
∴x<0时,函数g(x)是减函数,
又∵g(-2)=$\frac{f(-2)}{-2}$=0=g(2),
∴x>0时,由f(x)>0,得:g(x)>g(2),解得:x>2,
x<0时,由f(x)>0,得:g(x)<g(-2),解得:x>-2,
∴f(x)>0成立的x的取值范围是:(-2,0)∪(2,+∞).
故答案为:(-2,0)∪(2,+∞).

点评 本题考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式的应用问题,是综合题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.90°=$\frac{π}{2}$弧度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数y=f(x)的定义域是[0、1],则函数g(x)=$\frac{f(x)}{\sqrt{x-\frac{1}{2}}}$的定义域为(  )
A.[$\frac{1}{2}$,+∞]B.($\frac{1}{2}$,1)C.($\frac{1}{2}$,1]D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.A、B两点到平面α的距离分别是3cm、5cm,点M是AB的中点,则M点到平面α的距离是4或1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.A($\sqrt{2}$,1)为抛物线x2=2py(p>0)上一点,则A到其焦点F的距离为(  )
A.$\frac{3}{2}$B.$\sqrt{2}$+$\frac{1}{2}$C.2D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x-1-a(x-1)2-lnx(a∈R).
(1)当a=0时,求函数f(x)的单调区间;
(2)若函数g(x)=f(x)-x+1有一个极小值点和一个极大值点,求a的取值范围;
(3)若存在k∈(1,2),使得当x∈(0,k]时,f(x)的值域是[f(k),+∞),求a的取值范围.注:自然对数的底数e=2.71828…

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知三棱锥A-BCO,OA、OB、OC两两垂直且长度均为4,长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),则MN的中点P的轨迹与三棱锥的面所围成的几何体的体积为$\frac{π}{6}$或$\frac{32}{3}$-$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设曲线y=xn+1(n∈N+)在点(1,1)处的切线与x轴的交点的横坐标为xn,则log2012x1+log2012x2+…+log2012x2011的值为(  )
A.-log20122011B.-1C.(log20122011)-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线C:y2=2px(p>0)过点M(m,2),其焦点为F,且|MF|=2.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设E为y轴上异于原点的任意一点,过点E作不经过原点的两条直线分别与抛物线C和圆F:(x-1)2+y2=1相切,切点分别为A,B,求证:A、B、F三点共线.

查看答案和解析>>

同步练习册答案