4£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±Ïßl£º£¨1+¦Ë£©x+£¨¦Ë+2£©y-6-3¦Ë=0¹ý¶¨µãA£¬ÒÑÖªÔ²CµÄ°ë¾¶Îª1£¬ÇÒÔ²ÐÄÔÚÖ±Ïßy=2x-4ÉÏ£®
£¨1£©ÈôÔ²C¾­¹ýµãM£¨6£¬3£©£¬N£¨4£¬5£©£¬¹ýµãA×÷Ô²CµÄÇÐÏߣ¬ÈôÇеãΪE£¬F£¬ÇóÖ±ÏßEFµÄ·½³Ì£»
£¨2£©ÔÚÌõ¼þ£¨1£©Ï£¬¹ýµãB£¨$\frac{5}{2}$£¬$\frac{3}{2}$£©×÷Ö±Ïß½»Ô²CÓÚP£¬QÁ½µã£¬Çó|PQ|×îСʱֱÏߵķ½³Ì£»
£¨3£©ÈôÔ²CÉÏ´æÔÚµãQ£¬Ê¹|QA|=2|QO|£¬ÇóQµãµÄ¹ì¼£·½³Ì£¬²¢Çó³öÔ²ÐÄCµÄºá×ø±êaµÄȡֵ·¶Î§£®

·ÖÎö ÓÉÖ±Ïßϵ·½³ÌÇó³öAµã×ø±ê£®
£¨1£©Çó³öMNµÄÖд¹Ïß·½³Ì£¬ÁªÁ¢Á½Ö±Ïß·½³ÌÇóµÃÔ²ÐÄCµÄ×ø±ê£¬ÔòÔ²µÄ·½³Ì¿ÉµÃ£¬ÔÙÇó³öÒÔCAΪֱ¾¶µÄÔ²µÄ·½³Ì£¬ÓÉԲϵ·½³ÌÇóµÃÖ±ÏßEFµÄ·½³Ì£»
£¨2£©ÓÉÌâÒâ¿ÉÖª£¬µãB£¨$\frac{5}{2}$£¬$\frac{3}{2}$£©ÔÚÔ²CÄÚ²¿£¬ÒªÊ¹|PQ|×îС£¬ÔòPQËùÔÚÖ±Ïß´¹Ö±BC£¬Çó³öBCËùÔÚÖ±ÏßµÄбÂÊ£¬ÀûÓõãбʽ·½³ÌÇóµÃ|PQ|×îСʱֱÏߵķ½³Ì£»
£¨3£©Éè³öÔ²ÐÄCµÄ×ø±ê£¬±íʾ³öÔ²µÄ·½³Ì£¬Éè³öQ£¬½ø¶ø¸ù¾Ý|QA|=2|QO|ÇóµÃQµÄ¹ì¼£·½³Ì£¬ÅжϳöµãQÓ¦¸Ã¼ÈÔÚÔ²CÉÏÓÖÔÚÔ²DÉÏ£¬ÇÒÔ²CºÍÔ²DÓн»µã£¬ÓÉ´ËÈ·¶¨²»µÈ¹ØÏµÇóµÃaµÄ·¶Î§£®

½â´ð ½â£ºÓÉÖ±Ïßl£º£¨1+¦Ë£©x+£¨¦Ë+2£©y-6-3¦Ë=0£¬µÃ¦Ë£¨x+y-3£©+£¨x+2y-6£©=0£®
ÁªÁ¢$\left\{\begin{array}{l}{x+y-3=0}\\{x+2y-6=0}\end{array}\right.$£¬½âµÃA£¨0£¬3£©£¬
£¨1£©¡ßM£¨6£¬3£©£¬N£¨4£¬5£©£¬
¡àM£¬NµÄÖеã×ø±êΪ£¨5£¬4£©£¬${k}_{MN}=\frac{5-3}{4-6}=-1$£¬
ÔòMNµÄÖд¹Ïß·½³ÌΪy-4=1¡Á£¨x-5£©£¬¼´x-y-1=0£®
ÁªÁ¢$\left\{\begin{array}{l}{x-y-1=0}\\{y=2x-4}\end{array}\right.$£¬ÇóµÃÔ²ÐÄ×ø±êΪC£¨3£¬2£©£¬Ô²CµÄ°ë¾¶Îª$\sqrt{£¨6-3£©^{2}+£¨3-2£©^{2}}=\sqrt{10}$£¬
Ô²CµÄ·½³ÌΪ£º£¨x-3£©2+£¨y-2£©2=10£¬¼´x2+y2-6x-4y+3=0£®¢Ù
CAµÄÖеã×ø±êΪ£¨$\frac{3}{2}£¬\frac{5}{2}$£©£¬|CA|=$\sqrt{£¨3-0£©^{2}+£¨2-3£©^{2}}=\sqrt{10}$£¬
¡àÒÔCAΪֱ¾¶µÄÔ²µÄ·½³ÌΪ$£¨x-\frac{3}{2}£©^{2}+£¨y-\frac{5}{2}£©^{2}=£¨\frac{\sqrt{10}}{2}£©^{2}$£®
¼´x2+y2-3x-5y+6=0£®¢Ú
¢Ù-¢ÚµÃ£ºÖ±ÏßEFµÄ·½³ÌΪ3x-y+3=0£»
£¨2£©Ô²CµÄ·½³ÌΪ£º£¨x-3£©2+£¨y-2£©2=10£®
µãB£¨$\frac{5}{2}$£¬$\frac{3}{2}$£©ÔÚÔ²CÄÚ²¿£¬ÒªÊ¹|PQ|×îС£¬ÔòPQËùÔÚÖ±Ïß´¹Ö±BC£¬
¡ß${k}_{BC}=\frac{2-\frac{3}{2}}{3-\frac{5}{2}}=1$£¬¡àPQËùÔÚÖ±ÏßµÄбÂÊΪ-1£¬
¡àPQËùÔÚÖ±Ïß·½³ÌΪy-$\frac{3}{2}=-1¡Á£¨x-\frac{5}{2}£©$£¬¼´x+y-4=0£»
£¨3£©¡ßÔ²CµÄÔ²ÐÄÔÚÖ±Ïßy=2x-4ÉÏ£¬¡àÉèÔ²ÐÄCΪ£¨a£¬2a-4£©£¬
ÔòÔ²CµÄ·½³ÌΪ£º£¨x-a£©2+[y-£¨2a-4£©]2=1£®
ÓÖ|QA|=2|QO|£¬ÉèQΪ£¨x£¬y£©£¬Ôò$\sqrt{{x}^{2}+£¨y-3£©^{2}}=2\sqrt{{x}^{2}+{y}^{2}}$£®
ÕûÀíµÃ£ºx2+£¨y+1£©2=4£¬Éè¸Ã·½³Ì¶ÔÓ¦µÄԲΪD£¬
µãQÓ¦¸Ã¼ÈÔÚÔ²CÉÏÓÖÔÚÔ²DÉÏ£¬ÇÒÔ²CºÍÔ²DÓн»µã£®Ôò|2-1|¡Ü$\sqrt{{a}^{2}+[2a-4-£¨-1£©]^{2}}$¡Ü|2+1|£®
ÓÉ5a2-12a+8¡Ý0£¬µÃa¡ÊR£®
ÓÉ5a2-12a¡Ü0£¬µÃ0¡Üa¡Ü$\frac{12}{5}$£®
¡àÔ²ÐÄCµÄºá×ø±êµÄȡֵ·¶Î§Îª[0£¬$\frac{12}{5}$]£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÖ±ÏßÓëÔ²µÄ·½³ÌµÄÓ¦Ó㮿¼²éÁËѧÉú·ÖÎöÎÊÌâºÍ½â¾öÎÊÌâµÄÄÜÁ¦£¬¿¼²éÔËËãÄÜÁ¦£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÔÚ¡÷ABCÖУ¬a£¬b£¬c·Ö±ðÊǽÇA£¬B£¬CµÄ¶Ô±ß£¬Èô6a=4b=3c£¬ÔòcosB=$\frac{11}{16}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=sin2x+2$\sqrt{3}$sinxcosx+sin£¨x+$\frac{¦Ð}{4}$£©sin£¨x-$\frac{¦Ð}{4}$£©£¬x¡ÊR£®
£¨1£©Çóf£¨x£©µÄ×îСÕýÖÜÆÚ£»
£¨2£©Èôf£¨x£©ÔÚÇø¼ä[-$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{2}$]ÉϵÄ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªÊýÁÐ{an}ΪÊ×ÏîΪaµÄµÈ²îÊýÁУ¬ÊýÁÐ{${a_{2^n}}$+2n}Êǹ«±ÈΪqµÄµÈ±ÈÊýÁУ¬Ôòq=1£¬»ò2£¬ÊµÊýaµÄȡֵ·¶Î§ÊÇa¡Ù-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÖÀһö÷»×Ó£¬ÖÀ³öµÄµãÊýΪ7µÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{6}$B£®$\frac{1}{7}$C£®1D£®0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®´Ó100ÕűàºÃºÅÂ루1¡«100ºÅ£©µÄ¿¨Æ¬ÖÐÈÎȡһÕÅ£¬Çó£º
£¨1£©¿¨Æ¬ºÅÊÇÆæÊýµÄ¸ÅÂÊ£»
£¨2£©¿¨Æ¬ºÅÊÇ5µÄ±¶ÊýµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®½âÏÂÁв»µÈʽ£º
£¨1£©$\frac{x-1}{x}$¡Ý0£®
£¨2£©$\frac{2{x}^{2}-4x-7}{-{x}^{2}+2x-1}$¡Ý-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖª£¨1-x£©5=a0-a1x+a2x2-a3x3+a4x4-a5x5£¬Ôòa1+a3+a5=16£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖª¼¯ºÏA={l£¬2£¬3£¬4£¬5£¬6}£¬Èô´Ó¼¯ºÏAÖÐÈÎÈ¡3¸ö²»Í¬µÄÊý£¬ÔòÕâÈý¸öÊý¿ÉÒÔ×÷ΪÈý½ÇÐÎÈý±ß³¤µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{3}{10}$B£®$\frac{7}{20}$C£®$\frac{1}{2}$D£®$\frac{13}{20}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸