精英家教网 > 高中数学 > 题目详情
14.已知sin(α一β)=$\frac{3}{5}$,cos(α+β)=-$\frac{3}{5}$,且α-β∈($\frac{π}{2}$,π),α+β∈($\frac{π}{2}$,π),则cos2β的值为(  )
A.1B.-1C.$\frac{24}{25}$D.-$\frac{4}{5}$

分析 由已知求出cos(α-β),sin(α+β)的值,再由cos2β=cos[(α+β)-(α-β)],展开两角差的余弦求解.

解答 解:由sin(α-β)=$\frac{3}{5}$,cos(α+β)=-$\frac{3}{5}$,且α-β∈($\frac{π}{2}$,π),α+β∈($\frac{π}{2}$,π),
得cos(α-β)=$-\sqrt{1-si{n}^{2}(α-β)}=-\sqrt{1-(\frac{3}{5})^{2}}=-\frac{4}{5}$,sin(α+β)=$\sqrt{1-co{s}^{2}(α+β)}=\sqrt{1-(-\frac{3}{5})^{2}}=\frac{4}{5}$,
∴cos2β=cos[(α+β)-(α-β)]=cos(α+β)cos(α-β)+sin(α+β)sin(α-β)
=(-$\frac{4}{5}$)×(-$\frac{3}{5}$)+$\frac{4}{5}×\frac{3}{5}$=$\frac{24}{25}$.
故选:C.

点评 本题考查两角和与差的余弦,关键是“拆角配角”思想的运用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知三个向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$两两所夹的角都为120°,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,|$\overrightarrow{c}$|=3,求向量$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$与向量$\overrightarrow{a}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一个工人看管三台自动机床,在一小时内第一、二、三台机床不需要照顾的概率分别为0.9,0.8,0.85,在一小时的过程中,试求:
(1)没有一台机床需要照顾的概率;
(2)恰有两台机床需要照顾的概率;
(3)至少有一台机床需要照顾的概率;
(4)至少有两台机床需要照顾的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.6本不同的书,按下列要求各有多少种不同的方法:
(1)分给甲、乙、丙三人,每人两本;
(2)分为三份,每份两本.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知正实数x,y,z满足0≤log2x-log${\;}_{\sqrt{2}}$y+log2z≤1,且x+y≤2z,则$\frac{x-y}{z}$的取值范围为[-$\frac{1}{4}$,$\frac{5-\sqrt{17}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知|$\overrightarrow{a}$|=8,|$\overrightarrow{b}$|=6,则<$\overrightarrow{a}$,$\overrightarrow{b}$>=150°,则$\overrightarrow{a}$$•\overrightarrow{b}$=(  )
A.-24B.24C.-24$\sqrt{3}$D.24$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.与双曲线$\frac{{x}^{2}}{2}$-y2=1有相同的渐近线,且右焦点F到渐近线的距离为2的双曲线方程是(  )
A.$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{6}=1$B.$\frac{{y}^{2}}{3}-\frac{{x}^{2}}{6}=1$C.$\frac{{x}^{2}}{8}-\frac{{y}^{2}}{4}=1$D.$\frac{{y}^{2}}{4}-\frac{{x}^{2}}{8}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,矩形CDEF和梯形ABCD互相垂直,∠BAD=∠ADC=90°,AB=AD=$\frac{1}{2}$CD,BE⊥DF.
(1)若M位EA的中点,求证:AC∥平面MDF;
(2)若AB=2,求四棱锥E-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等比数列{an},满足an+1>an,a1+a4=9,a2•a3=8.
(1)求数列{an}的通项公式;
(2)求数列{(2n-1)an}的前n项和Tn

查看答案和解析>>

同步练习册答案