精英家教网 > 高中数学 > 题目详情
10.如图,矩形CDEF和梯形ABCD互相垂直,∠BAD=∠ADC=90°,AB=AD=$\frac{1}{2}$CD,BE⊥DF.
(1)若M位EA的中点,求证:AC∥平面MDF;
(2)若AB=2,求四棱锥E-ABCD的体积.

分析 (1)设EC与DF交于点N,连结MN,由中位线定理可得MN∥AC,故AC∥平面MDF;
(2)取CD中点为G,连结BG,EG,则可证四边形ABGD是矩形,由面面垂直的性质得出BG⊥平面CDEF,故BG⊥DF,又DF⊥BE得出DF⊥平面BEG,从而得出DF⊥EG,得出Rt△DEG~Rt△EFD,列出比例式求出DE,代入体积公式即可计算出体积.

解答 (1)证明:设EC与DF交于点N,连结MN,
∵矩形CDEF,∴点N为EC中点,
∵M为EA中点,
∴MN∥AC,又∵AC?平面MDF,MN?平面MDF
∴AC∥平面MDF.
(2)解:取CD中点为G,连结BG,EG,
∵$AB=\frac{1}{2}CD=DG,AB∥DG$,∠BAD=90°,
∴四边形ABGD是矩形,∴BG⊥CD.
∵平面CDEF⊥平面ABCD,平面CDEF∩平面ABCD=CD,BG?平面ABCD,BG⊥CD,
∴BG⊥平面CDEF,同理ED⊥平面ABCD,
又∵DF?平面CDEF,
∴BG⊥DF,又BE⊥DF,BE∩BG=B,
∴DF⊥平面BEG,DF⊥EG.
∴Rt△DEG~Rt△EFD,∴DE2=DG•EF=8,$DE=2\sqrt{2}$,
∴${V_{E-ABCD}}=\frac{1}{3}{S_{ABCD}}•ED=4\sqrt{2}$.

点评 本题考查了线面平行的判定,面面垂直的性质,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.某协会举办行业知识测试,为更好地了解从业人员对行业知识掌握程度的分布情况,从参加测试的人中随机抽取100人,对他们的行业测试成绩进行统计,得到如下频数分布表:
 成绩[50,60)[60,70)[70,80)[80,90)[90,100)
 人数 10 20 35 30 5
依此数据,估计这次行业知识测试的平均成绩$\overline{x}$和方差s2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知sin(α一β)=$\frac{3}{5}$,cos(α+β)=-$\frac{3}{5}$,且α-β∈($\frac{π}{2}$,π),α+β∈($\frac{π}{2}$,π),则cos2β的值为(  )
A.1B.-1C.$\frac{24}{25}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若不等式x2<9-m2有实数解,求m的范围(-3,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,正三棱柱ABC-A1B1C1中,E,F分别是BC,CC1的中点.
(Ⅰ)证明:平面AEF⊥平面B1BCC1
(Ⅱ)若该三棱柱所有的棱长均为2,求三棱锥B1-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和为Sn,向量$\overrightarrow{a}$=(Sn,1),$\overrightarrow{b}$=(2n-1,$\frac{1}{2}$),满足条件$\overrightarrow{a}$∥$\overrightarrow{b}$,
(1)求数列{an}的通项公式,
(2)设函数f(x)=($\frac{1}{2}$)x,数列{bn}满足条件b1=1,f(bn+1)=$\frac{1}{{f(-{b_n}-1)}}$.
①求数列{bn}的通项公式,
②设cn=$\frac{{b}_{n}}{{a}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在数列{an}中,a1=$\frac{1}{2}$,an+1=$\frac{n+1}{2n}$an,n∈N*
(1)求证:数列{$\frac{{a}_{n}}{n}$}为等比数列;
(2)求数列{an}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.我国2005年人均GDP为1703美元,如果按照7%的年平均增长率,我们要努力多少年才能达到发达国家水平(一般认为,发达国家水平人均GDP应在10000美元以上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设计算法将1573分解成奇因数的乘积.

查看答案和解析>>

同步练习册答案