15£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÏòÁ¿$\overrightarrow{a}$=£¨Sn£¬1£©£¬$\overrightarrow{b}$=£¨2n-1£¬$\frac{1}{2}$£©£¬Âú×ãÌõ¼þ$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£¬
£¨2£©É躯Êýf£¨x£©=£¨$\frac{1}{2}$£©x£¬ÊýÁÐ{bn}Âú×ãÌõ¼þb1=1£¬f£¨bn+1£©=$\frac{1}{{f£¨-{b_n}-1£©}}$£®
¢ÙÇóÊýÁÐ{bn}µÄͨÏʽ£¬
¢ÚÉècn=$\frac{{b}_{n}}{{a}_{n}}$£¬ÇóÊýÁÐ{cn}µÄǰnÏîºÍTn£®

·ÖÎö £¨1£©ÔËÓÃÏòÁ¿¹²ÏßµÄ×ø±ê±íʾ£¬¿ÉµÃSn=2n+1-2£¬ÔÙÓɵ±n£¾1ʱ£¬an=Sn-Sn-1£¬n=1ʱ£¬a1=S1£¬¼´¿ÉµÃµ½ËùÇóͨÏʽ£»
£¨2£©¢ÙÔËÓÃÖ¸ÊýµÄÔËËãÐÔÖʺ͵ȲîÊýÁе͍Ò壬¼´¿ÉµÃµ½ËùÇóͨÏʽ£»
¢ÚÇóµÃCn=$\frac{{b}_{n}}{{a}_{n}}$=$\frac{n}{{2}^{n}}$£¬ÔËÓÃÊýÁеÄÇóºÍ·½·¨£º´íλÏà¼õ·¨£¬½áºÏµÈ±ÈÊýÁеÄÇóºÍ¹«Ê½£¬»¯¼òÕûÀí¼´¿ÉµÃµ½ËùÇóºÍ£®

½â´ð ½â£º£¨1£©ÓÉÏòÁ¿$\overrightarrow{a}$=£¨Sn£¬1£©£¬$\overrightarrow{b}$=£¨2n-1£¬$\frac{1}{2}$£©£¬$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬
¿ÉµÃ$\frac{1}{2}$Sn=2n-1£¬¼´Sn=2n+1-2£¬
µ±n£¾1ʱ£¬an=Sn-Sn-1=£¨2n+1-2£©-£¨2n-2£©=2n£¬
µ±n=1ʱ£¬a1=S1=2£¬Âú×ãÉÏʽ£®
ÔòÓÐÊýÁÐ{an}µÄͨÏʽΪan=2n£¬n¡ÊN*£»
£¨2£©¢Ùf£¨x£©=£¨$\frac{1}{2}$£©x£¬b1=1£¬f£¨bn+1£©=$\frac{1}{{f£¨-{b_n}-1£©}}$£®
¿ÉµÃ£¨$\frac{1}{2}$£©${\;}^{{b}_{n+1}}$=$\frac{1}{£¨\frac{1}{2}£©^{-1-{b}_{n}}}$=£¨$\frac{1}{2}$£©${\;}^{1+{b}_{n}}$£¬
¼´ÓÐbn+1=bn+1£¬¿ÉµÃ{bn}ΪÊ×ÏîºÍ¹«²î¾ùΪ1µÄµÈ²îÊýÁУ¬
¼´ÓÐbn=n£»
¢ÚCn=$\frac{{b}_{n}}{{a}_{n}}$=$\frac{n}{{2}^{n}}$£¬Ç°nÏîºÍTn=1•$\frac{1}{2}$+2•£¨$\frac{1}{2}$£©2+¡­+£¨n-1£©•£¨$\frac{1}{2}$£©n-1+n•£¨$\frac{1}{2}$£©n£¬
$\frac{1}{2}$Tn=1•£¨$\frac{1}{2}$£©2+2•£¨$\frac{1}{2}$£©3+¡­+£¨n-1£©•£¨$\frac{1}{2}$£©n+n•£¨$\frac{1}{2}$£©n+1£¬
Ïà¼õ¿ÉµÃ£¬$\frac{1}{2}$Tn=$\frac{1}{2}$+£¨$\frac{1}{2}$£©2+¡­+£¨$\frac{1}{2}$£©n-1+£¨$\frac{1}{2}$£©n-n•£¨$\frac{1}{2}$£©n+1
=$\frac{\frac{1}{2}£¨1-\frac{1}{{2}^{n}}£©}{1-\frac{1}{2}}$-n•£¨$\frac{1}{2}$£©n+1£¬
»¯¼ò¿ÉµÃ£¬Ç°nÏîºÍTn=2-$\frac{n+2}{{2}^{n}}$£®

µãÆÀ ±¾Ì⿼²éµÈ²îÊýÁеÄͨÏîµÄÇ󷨣¬×¢ÒâÔËÓÃÊýÁеÄͨÏîÓëÇóºÍµÄ¹ØÏµ£¬¿¼²éÊýÁеÄÇóºÍ·½·¨£º´íλÏà¼õ·¨£¬Í¬Ê±¿¼²éÏòÁ¿¹²ÏßµÄ×ø±ê±íʾºÍµÈ±ÈÊýÁеÄÇóºÍ¹«Ê½µÄÔËÓã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÈçͼÕýËÄÀâסABCD-A1B1C1D1ÖУ¬µãEÊÇA1AÉϵĵ㣬MÊÇAC¡¢BDµÄ½»µã£®
£¨1£©ÈôA1C¡ÎÆ½ÃæEBD£¬ÇóÖ¤£ºµãEÊÇAA1Öе㣻
£¨2£©ÈôAB=1£¬¡÷EBDµÄÃæ»ýS=$\sqrt{2}$£¬µãFÔÚCC1ÉÏ£¬ÇÒFM¡ÍEM£¬ÇóÈýÀâ×¶Ìå»ýVF-EBDµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖª|$\overrightarrow{a}$|=8£¬|$\overrightarrow{b}$|=6£¬Ôò£¼$\overrightarrow{a}$£¬$\overrightarrow{b}$£¾=150¡ã£¬Ôò$\overrightarrow{a}$$•\overrightarrow{b}$=£¨¡¡¡¡£©
A£®-24B£®24C£®-24$\sqrt{3}$D£®24$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬Ö±ÈýÀâÖùABC-A1B1C1µÄµ×ÃæÎªÕýÈý½ÇÐΣ¬E¡¢F·Ö±ðÊÇBC¡¢CC1µÄÖе㣮
£¨1£©Ö¤Ã÷£ºÆ½ÃæAEF¡ÍÆ½ÃæB1BCC1£»
£¨2£©ÈôDΪABÖе㣬¡ÏCA1D=45¡ãÇÒAB=2£¬ÇóÈýÀâ×¶F-AECµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬¾ØÐÎCDEFºÍÌÝÐÎABCD»¥Ïà´¹Ö±£¬¡ÏBAD=¡ÏADC=90¡ã£¬AB=AD=$\frac{1}{2}$CD£¬BE¡ÍDF£®
£¨1£©ÈôMλEAµÄÖе㣬ÇóÖ¤£ºAC¡ÎÆ½ÃæMDF£»
£¨2£©ÈôAB=2£¬ÇóËÄÀâ×¶E-ABCDµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÈôSnΪÊýÁÐ{an}µÄǰnÏîºÍ£¬ÇÒa1=1£¬Sn=$\frac{1}{2}$anan+1£¬an¡Ù0£¬ÈôÊýÁÐ{$\frac{1}{2{S}_{n}}$}µÄǰnÏîºÍTn=$\frac{2016}{2017}$£¬ÔònµÄֵΪ2016£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖª¹«²î´óÓÚÁãµÄµÈ²îÊýÁÐ{an}£¬¸÷Ïî¾ùΪÕýÊýµÄµÈ±ÈÊýÁÐ{bn}£¬Âú×ãa1=1£¬b1=2£¬a4=b2£¬a8=b3£®
£¨1£©ÇóÊýÁÐ{an}ºÍ{bn}µÄͨÏʽ£»
£¨2£©Áî${c_n}=\frac{a_n}{b_n}$£¬ÊýÁÐ{cn}µÄǰnÏîºÍΪSn£¬ÇóÖ¤£ºSn£¼2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®[A]ÒÑÖªÊýÁÐ{an}Âú×ãa4=20£¬an+1=2an-n+1£¨n¡ÊN+£©£®
£¨1£©¼ÆËãa1£¬a2£¬a3£¬¸ù¾Ý¼ÆËã½á¹û£¬²ÂÏëanµÄ±í´ïʽ£¨²»±ØÖ¤Ã÷£©£»
£¨2£©ÈôÊýÁÐ{an}µÄǰnÏîºÍSn£¾2016£¬ÇónµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=x|x-a|
£¨1£©ÅжÏf£¨x£©µÄÆæÅ¼ÐÔ£¬²¢Ö¤Ã÷£»
£¨2£©ÇóʵÊýaµÄȡֵ·¶Î§£¬Ê¹º¯Êýg£¨x£©=f£¨x£©+2x+1ÔÚRÉϺãΪÔöº¯Êý£»
£¨3£©Çóº¯Êýf£¨x£©ÔÚ[-1£¬1]µÄ×îСֵg£¨a£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸