精英家教网 > 高中数学 > 题目详情
7.已知公差大于零的等差数列{an},各项均为正数的等比数列{bn},满足a1=1,b1=2,a4=b2,a8=b3
(1)求数列{an}和{bn}的通项公式;
(2)令${c_n}=\frac{a_n}{b_n}$,数列{cn}的前n项和为Sn,求证:Sn<2.

分析 (1)通过联立a4=b2、a8=b3,计算可知公差和公比,利用公式计算即得结论;
(2)通过(1)可知${c_n}=\frac{n}{2^n}$,进而利用错位相减法计算即得结论.

解答 (1)解:设等差数列{an}的公差为d(d>0),等比数列{bn}的公比为q(q>0),
∵a1=1,b1=2,a4=b2,a8=b3
∴1+3d=2q,1+7d=2q2
解得:d=1,q=2,
∴an=n,${b_n}={2^n}$;
(2)证明:∵an=n,${b_n}={2^n}$,
∴${c_n}=\frac{n}{2^n}$,
∴${S_n}=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+…+\frac{n-1}{{{2^{n-1}}}}+\frac{n}{2^n}$,
$\frac{1}{2}{S_n}=\frac{1}{2^2}+\frac{2}{2^3}+\frac{3}{2^4}+…+\frac{n-1}{2^n}+\frac{n}{{{2^{n+1}}}}$,
两式相减得,$\frac{1}{2}$Sn=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$-n•$\frac{1}{{2}^{n+1}}$,
∴Sn=1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$-n•$\frac{1}{{2}^{n}}$
=1$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-n•$\frac{1}{{2}^{n}}$
=2-$\frac{n+2}{{2}^{n}}$
<2.

点评 本题考查数列的通项及前n项和,考查错位相减法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知等比数列{an}的各项都为正数,其前n项和为S,且S3=42,16a2•a6=a3•a7
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{(lo{g}_{2}{a}_{n})•(lo{g}_{2}{a}_{n+1})}$,数列{bn}的前n项和为Tn,求证:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若不等式x2<9-m2有实数解,求m的范围(-3,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和为Sn,向量$\overrightarrow{a}$=(Sn,1),$\overrightarrow{b}$=(2n-1,$\frac{1}{2}$),满足条件$\overrightarrow{a}$∥$\overrightarrow{b}$,
(1)求数列{an}的通项公式,
(2)设函数f(x)=($\frac{1}{2}$)x,数列{bn}满足条件b1=1,f(bn+1)=$\frac{1}{{f(-{b_n}-1)}}$.
①求数列{bn}的通项公式,
②设cn=$\frac{{b}_{n}}{{a}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在数列{an}中,a1=$\frac{1}{2}$,an+1=$\frac{n+1}{2n}$an,n∈N*
(1)求证:数列{$\frac{{a}_{n}}{n}$}为等比数列;
(2)求数列{an}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,△ABC中,O是BC的中点,AB=AC,AO=2OC=2,将△BAO沿AO折起,使B点到达B′点.
(Ⅰ)求证:AO⊥平面B′OC;
(Ⅱ)当三棱锥B′-AOC的体积最大时,试问在线段B′A上是否存在一点P,使CP与平面B′OA所成的角的正弦值为$\frac{{\sqrt{6}}}{3}$?若存在,求出点P的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.我国2005年人均GDP为1703美元,如果按照7%的年平均增长率,我们要努力多少年才能达到发达国家水平(一般认为,发达国家水平人均GDP应在10000美元以上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设数列{an}的前n项和为Sn,d为常数,已知对?n,m∈N*,当n>m,总有Sn-Sm=Sn-m+m(n-m)d成立
(1)求证:数列{an}是等差数列;
(2)探究:命题p:“对?n,m∈N*,当n>m时,总有Sn-Sm=Sn-m+m(n-m)d”是命题q:“数列{an}是等差数列”的充要条件吗?请证明你的结论;
(3)若正整数n,m,k成等差数列,比较Sn+Sk与2Sm的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.圆x2+y2-4x=0的圆心到双曲线$\frac{{x}^{2}}{3}$-y2=1的渐近线的距离为(  )
A.1B.2C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

同步练习册答案