精英家教网 > 高中数学 > 题目详情
2.在数列{an}中,a1=$\frac{1}{2}$,an+1=$\frac{n+1}{2n}$an,n∈N*
(1)求证:数列{$\frac{{a}_{n}}{n}$}为等比数列;
(2)求数列{an}的前n项和.

分析 (1)通过对an+1=$\frac{n+1}{2n}$an变形可知$\frac{{a}_{n+1}}{n+1}$=$\frac{1}{2}$•$\frac{{a}_{n}}{n}$,进而可知数列{$\frac{{a}_{n}}{n}$}是首项、公比均为$\frac{1}{2}$的等比数列;
(2)通过(1)可知${a_n}=\frac{n}{2^n}$,进而利用错位相减法计算即得结论.

解答 (1)证明:∵an+1=$\frac{n+1}{2n}$an
∴$\frac{{a}_{n+1}}{n+1}$=$\frac{1}{2}$•$\frac{{a}_{n}}{n}$,
又∵$\frac{{a}_{1}}{1}$=$\frac{1}{2}$,
∴数列{$\frac{{a}_{n}}{n}$}是首项、公比均为$\frac{1}{2}$的等比数列;
(2)解:由(1)可知$\frac{{a}_{n}}{n}$=$\frac{1}{{2}^{n}}$,${a_n}=\frac{n}{2^n}$,
∴${S_n}=\frac{1}{2}+\frac{2}{2^2}+…+\frac{n}{2^n}$,
$\frac{1}{2}$Sn=$\frac{1}{{2}^{2}}$+2•$\frac{1}{{2}^{3}}$+…+(n-1)•$\frac{1}{{2}^{n}}$+n•$\frac{1}{{2}^{n+1}}$,
两式相减得:$\frac{1}{2}$Sn=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$-n•$\frac{1}{{2}^{n+1}}$,
∴Sn=1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n-1}}$-n•$\frac{1}{{2}^{n}}$
=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-n•$\frac{1}{{2}^{n}}$
=2-$\frac{n+2}{{2}^{n}}$.

点评 本题考查数列的通项及前n项和,考查错位相减法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.一个工人看管三台自动机床,在一小时内第一、二、三台机床不需要照顾的概率分别为0.9,0.8,0.85,在一小时的过程中,试求:
(1)没有一台机床需要照顾的概率;
(2)恰有两台机床需要照顾的概率;
(3)至少有一台机床需要照顾的概率;
(4)至少有两台机床需要照顾的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.与双曲线$\frac{{x}^{2}}{2}$-y2=1有相同的渐近线,且右焦点F到渐近线的距离为2的双曲线方程是(  )
A.$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{6}=1$B.$\frac{{y}^{2}}{3}-\frac{{x}^{2}}{6}=1$C.$\frac{{x}^{2}}{8}-\frac{{y}^{2}}{4}=1$D.$\frac{{y}^{2}}{4}-\frac{{x}^{2}}{8}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,矩形CDEF和梯形ABCD互相垂直,∠BAD=∠ADC=90°,AB=AD=$\frac{1}{2}$CD,BE⊥DF.
(1)若M位EA的中点,求证:AC∥平面MDF;
(2)若AB=2,求四棱锥E-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.给定集合An={1,2,3,…,n},n∈N*.若f是An→An的映射且满足:
①任取i,j∈An,若i≠j,则f(i)≠f(j);
②任取m∈An,若m≥2,则有m∈{f(1),f(2),…,f(m)}.
则称映射f为An→An的一个“优映射”.
例如:用表1表示的映射f:A3→A3是一个“优映射”.
表一
i123
F(i)231
表2
i1234
F(i)3
(1)若f:A4→A4是一个“优映射”,请把表2补充完整(只需填出一个满足条件的映射);
(2)若f:A2015→A2015是“优映射”,且f(1004)=1,则f(1000)+f(1017)的最大值为2021.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知公差大于零的等差数列{an},各项均为正数的等比数列{bn},满足a1=1,b1=2,a4=b2,a8=b3
(1)求数列{an}和{bn}的通项公式;
(2)令${c_n}=\frac{a_n}{b_n}$,数列{cn}的前n项和为Sn,求证:Sn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}是首项和公差相等的等差数列,其前n项和为Sn,且S10=55.
(Ⅰ)求an和Sn
(Ⅱ)设${b_n}=\frac{1}{S_n}$,数列{bn}的前项和Tn,求Tn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等比数列{an},满足an+1>an,a1+a4=9,a2•a3=8.
(1)求数列{an}的通项公式;
(2)求数列{(2n-1)an}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a,b∈R,那么“ln$\frac{a}{b}$>0”是“a>b>0”的(  )
A.充分不必要条件B.充要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案