精英家教网 > 高中数学 > 题目详情
20.若Sn为数列{an}的前n项和,且a1=1,Sn=$\frac{1}{2}$anan+1,an≠0,若数列{$\frac{1}{2{S}_{n}}$}的前n项和Tn=$\frac{2016}{2017}$,则n的值为2016.

分析 通过Sn=$\frac{1}{2}$anan+1与Sn-1=$\frac{1}{2}$an-1an作差,整理可知an+1-an-1=2,进而an=n,通过裂项可知$\frac{1}{2{S}_{n}}$=$\frac{1}{n}$-$\frac{1}{n+1}$,进而并项相加可知Tn=$\frac{n}{n+1}$,对比即得结论.

解答 解:∵Sn=$\frac{1}{2}$anan+1
∴当n≥2时,Sn-1=$\frac{1}{2}$an-1an
两式相减得:an=$\frac{1}{2}$anan+1-$\frac{1}{2}$an-1an
又∵an≠0,
∴an+1-an-1=2,
又∵a1=1,a2=2,
∴数列{an}的奇数项是首项为1、公差为2的等差数列,
偶数项是首项、公差均为2的等差数列,
∴an=n,Sn=$\frac{n(n+1)}{2}$,
∴$\frac{1}{2{S}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
又∵Tn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=$\frac{2016}{2017}$,
∴1-$\frac{1}{n+1}$=$\frac{2016}{2017}$,即$\frac{n}{n+1}$=$\frac{2016}{2017}$,
∴n=2016,
故答案为:2016.

点评 本题考查数列的通项及前n项和,考查运算求解能力,考查裂项相消法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知有一条抛物线${y}^{2}=\frac{8e}{3}x$,且在其上存在三点A,B,D,且三角形ABD的重心恰好为抛物线的焦点,则当三角形ABD面积为最大时,三角形的三条边与x轴交于两点,记横坐标较大的点的横坐标为m,且记函数f(x)=xlnx;g(x)=k[k∈[-m,+∞)].
(1)若f(x)=g(x)这组方程存在两根x1,x2,试求x1x2的取值范围.
(2)在(1)的条件下试求x1+x2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列等式恒成立的是(  )
A.$\overrightarrow{AB}$+$\overrightarrow{BA}$=0B.$\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{BC}$C.($\overrightarrow{a}•\overrightarrow{b}$)$•\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow{b}•\overrightarrow{c}$)D.($\overrightarrow{a}$+$\overrightarrow{b}$)$•\overrightarrow{c}$=$\overrightarrow{a}•\overrightarrow{c}$+$\overrightarrow{b}•\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某种“笼具”由内,外两层组成,无下底面,内层和外层分别是一个圆锥和圆柱,其中圆柱与圆锥的底面周长相等,圆柱有上底面,制作时需要将圆锥的顶端剪去,剪去部分和接头忽略不计,已知圆柱的底面周长为24πcm,高为30cm,圆锥的母线长为20cm.
(1)求这种“笼具”的体积(结果精确到0.1cm3);
(2)现要使用一种纱网材料制作50个“笼具”,该材料的造价为每平方米8元,共需多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和为Sn,向量$\overrightarrow{a}$=(Sn,1),$\overrightarrow{b}$=(2n-1,$\frac{1}{2}$),满足条件$\overrightarrow{a}$∥$\overrightarrow{b}$,
(1)求数列{an}的通项公式,
(2)设函数f(x)=($\frac{1}{2}$)x,数列{bn}满足条件b1=1,f(bn+1)=$\frac{1}{{f(-{b_n}-1)}}$.
①求数列{bn}的通项公式,
②设cn=$\frac{{b}_{n}}{{a}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.圆x2+y2-2x-2y+1=0上的点到直线x-y=2的距离的最大值是$\sqrt{2}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,△ABC中,O是BC的中点,AB=AC,AO=2OC=2,将△BAO沿AO折起,使B点到达B′点.
(Ⅰ)求证:AO⊥平面B′OC;
(Ⅱ)当三棱锥B′-AOC的体积最大时,试问在线段B′A上是否存在一点P,使CP与平面B′OA所成的角的正弦值为$\frac{{\sqrt{6}}}{3}$?若存在,求出点P的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某中学从高三甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩如下:
甲班:92,80,79,78,85,96,85
乙班:81,91,91,76,81,92,83
(Ⅰ)若竞赛成绩在90分以上的视为“优秀生”,则从“优秀生”中任意选出2名,乙班恰好只有1名的概率是多少?
(Ⅱ)根据两组数据完成两班数学竞赛成绩的茎叶图,指出甲班学生成绩的众数,乙班学生成绩中位数,并请你利用所学的平均数、方差的知识分析一下两个班学生的竞赛成绩情况.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知F1,F2分别为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,Q为椭圆C上的一点,且△QF1O(O为坐标原点)为正三角形,若射线QF1,QO与椭圆分别相交于点P,R,则△QF1O与△QPR的面积的比值为$\frac{\sqrt{3}+1}{8}$.

查看答案和解析>>

同步练习册答案