精英家教网 > 高中数学 > 题目详情
19.已知|$\overrightarrow{a}$|=8,|$\overrightarrow{b}$|=6,则<$\overrightarrow{a}$,$\overrightarrow{b}$>=150°,则$\overrightarrow{a}$$•\overrightarrow{b}$=(  )
A.-24B.24C.-24$\sqrt{3}$D.24$\sqrt{3}$

分析 代入平面向量的数量级定义计算.

解答 解:$\overrightarrow{a}•\overrightarrow{b}$=|$\overrightarrow{a}$||$\overrightarrow{b}$|cos150°=8×6×(-$\frac{\sqrt{3}}{2}$)=-24$\sqrt{3}$.
故选:C.

点评 本题考查了平面向量的数量级运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.若(3x-1)10=a0+a1x+a2x2+…+anxn+…+a10x10(x∈R,n∈N)
(Ⅰ)求n为何值时,|an|取最大值;
(Ⅱ)求$\frac{1}{3}$+$\frac{{a}_{2}}{{3}^{2}{a}_{1}}$+$\frac{{a}_{3}}{{3}^{3}{a}_{1}}$+…+$\frac{{a}_{10}}{{3}^{10}{a}_{1}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等比数列{an}的各项都为正数,其前n项和为S,且S3=42,16a2•a6=a3•a7
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{(lo{g}_{2}{a}_{n})•(lo{g}_{2}{a}_{n+1})}$,数列{bn}的前n项和为Tn,求证:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用平面区域表示下列不等式组.
(1)$\left\{\begin{array}{l}{x≥y}\\{3x+4y-12<0}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y+1>0}\\{x≤3}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知sin(α一β)=$\frac{3}{5}$,cos(α+β)=-$\frac{3}{5}$,且α-β∈($\frac{π}{2}$,π),α+β∈($\frac{π}{2}$,π),则cos2β的值为(  )
A.1B.-1C.$\frac{24}{25}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列等式恒成立的是(  )
A.$\overrightarrow{AB}$+$\overrightarrow{BA}$=0B.$\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{BC}$C.($\overrightarrow{a}•\overrightarrow{b}$)$•\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow{b}•\overrightarrow{c}$)D.($\overrightarrow{a}$+$\overrightarrow{b}$)$•\overrightarrow{c}$=$\overrightarrow{a}•\overrightarrow{c}$+$\overrightarrow{b}•\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若不等式x2<9-m2有实数解,求m的范围(-3,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和为Sn,向量$\overrightarrow{a}$=(Sn,1),$\overrightarrow{b}$=(2n-1,$\frac{1}{2}$),满足条件$\overrightarrow{a}$∥$\overrightarrow{b}$,
(1)求数列{an}的通项公式,
(2)设函数f(x)=($\frac{1}{2}$)x,数列{bn}满足条件b1=1,f(bn+1)=$\frac{1}{{f(-{b_n}-1)}}$.
①求数列{bn}的通项公式,
②设cn=$\frac{{b}_{n}}{{a}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设数列{an}的前n项和为Sn,d为常数,已知对?n,m∈N*,当n>m,总有Sn-Sm=Sn-m+m(n-m)d成立
(1)求证:数列{an}是等差数列;
(2)探究:命题p:“对?n,m∈N*,当n>m时,总有Sn-Sm=Sn-m+m(n-m)d”是命题q:“数列{an}是等差数列”的充要条件吗?请证明你的结论;
(3)若正整数n,m,k成等差数列,比较Sn+Sk与2Sm的大小,并说明理由.

查看答案和解析>>

同步练习册答案