精英家教网 > 高中数学 > 题目详情
5.如图所示,正三棱柱ABC-A1B1C1中,E,F分别是BC,CC1的中点.
(Ⅰ)证明:平面AEF⊥平面B1BCC1
(Ⅱ)若该三棱柱所有的棱长均为2,求三棱锥B1-AEF的体积.

分析 (I)由BB1⊥平面ABC可知BB1⊥AE,又AE⊥BC可得AE⊥平面BCC1B1,从而平面AEF⊥平面B1BCC1
(II)由(1)知AE为棱锥A-B1EF的高.于是V${\;}_{{B}_{1}-AEF}$=V${\;}_{A-{B}_{1}EF}$=$\frac{1}{3}{S}_{△{B}_{1}EF}•AE$.

解答 解:(I)∵BB1⊥面ABC,AE?平面ABC,
∴AE⊥BB1
∵E是正三角形ABC的边BC的中点,
∴AE⊥BC,
又∵BC?平面B1BCC1,B1B?平面B1BCC1,BC∩BB1=B,
∴AE⊥平面B1BCC1,∵AE?平面AEF,
∴平面AEF⊥平面B1BCC1
(II)∵三棱柱所有的棱长均为2,
∴AE=$\sqrt{3}$,
∴S${\;}_{△{B}_{1}EF}$=2×2-$\frac{1}{2}×2×1$-$\frac{1}{2}×1×1$$-\frac{1}{2}×2×1$=$\frac{3}{2}$,
由(I)知AE⊥平面B1BCC1
∴${V_{{B_1}-AEF}}={V_{A-{B_1}EF}}=\frac{1}{3}•\frac{3}{2}•\sqrt{3}=\frac{{\sqrt{3}}}{2}$.

点评 本题考查了面面垂直的判定,棱锥的体积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.停车扬上有3辆小车,2辆摩托车,1辆自行车,为美观环境,要求同类车必须相邻,则不同的停放车辆的方法有(  )
A.12种B.36种C.48种D.72种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知正实数x,y,z满足0≤log2x-log${\;}_{\sqrt{2}}$y+log2z≤1,且x+y≤2z,则$\frac{x-y}{z}$的取值范围为[-$\frac{1}{4}$,$\frac{5-\sqrt{17}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.与双曲线$\frac{{x}^{2}}{2}$-y2=1有相同的渐近线,且右焦点F到渐近线的距离为2的双曲线方程是(  )
A.$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{6}=1$B.$\frac{{y}^{2}}{3}-\frac{{x}^{2}}{6}=1$C.$\frac{{x}^{2}}{8}-\frac{{y}^{2}}{4}=1$D.$\frac{{y}^{2}}{4}-\frac{{x}^{2}}{8}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.向量$\overrightarrow{a}$=(cosx,sinx),|$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$满足|k$\overrightarrow{a}$$+\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow{b}$|(k>0),则$\overrightarrow{a}$$•\overrightarrow{b}$的最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,矩形CDEF和梯形ABCD互相垂直,∠BAD=∠ADC=90°,AB=AD=$\frac{1}{2}$CD,BE⊥DF.
(1)若M位EA的中点,求证:AC∥平面MDF;
(2)若AB=2,求四棱锥E-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.给定集合An={1,2,3,…,n},n∈N*.若f是An→An的映射且满足:
①任取i,j∈An,若i≠j,则f(i)≠f(j);
②任取m∈An,若m≥2,则有m∈{f(1),f(2),…,f(m)}.
则称映射f为An→An的一个“优映射”.
例如:用表1表示的映射f:A3→A3是一个“优映射”.
表一
i123
F(i)231
表2
i1234
F(i)3
(1)若f:A4→A4是一个“优映射”,请把表2补充完整(只需填出一个满足条件的映射);
(2)若f:A2015→A2015是“优映射”,且f(1004)=1,则f(1000)+f(1017)的最大值为2021.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}是首项和公差相等的等差数列,其前n项和为Sn,且S10=55.
(Ⅰ)求an和Sn
(Ⅱ)设${b_n}=\frac{1}{S_n}$,数列{bn}的前项和Tn,求Tn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知x,y满足$\left\{\begin{array}{l}{y≤x+\frac{9}{2}}\\{x+2y≥6}\\{y≥3x-a(a∈z)}\end{array}\right.$,若z=4x-y的最大值为$\frac{33}{4}$,则a的值为(  )
A.7B.6C.5D.4

查看答案和解析>>

同步练习册答案