精英家教网 > 高中数学 > 题目详情
已知f(x)与g(x)都是定义在R上的奇函数,若F(x)=af(x)+bg(x)+2,且F(-2)=5,则F(2)=
 
考点:函数奇偶性的性质
专题:计算题,函数的性质及应用
分析:令h(x)=F(x)-2,证明函数h(x)为奇函数,再由F(-2)=5,求得h(-2)的值,可得h(2)的值,从而求得F(2)的值.
解答: 解:令h(x)=F(x)-2=af(x)+bg(x),
由于f(x)和g(x)都是定义在R上的奇函数,
故函数h(-x)=af(-x)+bg(-x)=-af(x)-bg(x)=-h(x),
故函数h(x)为奇函数.
再由F(-2)=5,可得h(-2)=F(-2)-2=5-2=3,
故h(-2)=-h(2)=3,则h(2)=-3,F(2)-2=-3,
求得F(2)=-1,
故答案为:-1.
点评:本题主要考查利用函数的奇偶性求函数的值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一质点受到平面上的三个力F1,F2,F3(单位:牛顿)的作用而处于平衡状态.已知F1,F2成60°角,且F1,F2的大小分别为2和4,则F3的大小为(  )
A、6
B、2
C、8
D、2
7

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足约束条件
x+y≥2
2x-y≤4
x-y≥0
,则目标函数z=2x+3y的最大值为(  )
A、22B、20C、5D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

求和:1-2+3-4+5-6+…+(2n-1)-2n.

查看答案和解析>>

科目:高中数学 来源: 题型:

E、F、G分别是空间四边形ABCD的棱BC、CD、DA的中点,则此四面体中与过E、F、G的截面平行的棱的条数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=-x+1,则不等式x•f(x)>0在x∈(-3,1)上的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①若直线a∥平面α,直线b⊥α,则a⊥b;
②若直线a∥平面α,α⊥平面β,则a⊥β;
③若a、b是二条平行直线,b?平面α,则a∥α;
④若平面α⊥平面β,平面γ⊥β,则α∥γ.
其中不正确的命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

若(1+x)n=1+a1x+a2x2+a3x3+…+xn(n∈N*),且a1:a3=1:2,则n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

π
4
-
π
4
cosxdx=(  )
A、0
B、-
2
C、
2
D、π

查看答案和解析>>

同步练习册答案