精英家教网 > 高中数学 > 题目详情

已知△ABC中,数学公式数学公式,B=60°,那么sin(B+C)等于


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:由正弦定理求得sinA=,再由大边对大角可得A<B,故 A=45°,由此求得sin(B+C)=sinA的值.
解答:∵△ABC中,,B=60°,∴由正弦定理可得
解得 sinA=
再由大边对大角可得A<B,∴A=45°,故sin(B+C)=sinA=
故选 B.
点评:本题主要考查正弦定理的应用,诱导公式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中,a、b、c分别为角A、B、C所在的对边,且a=4,b+c=5,tanB+tanC+
3
=
3
tanB•tanC,则△ABC的面积为(  )
A、
3
4
B、3
3
C、
3
3
4
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,a,b,c分别为角A,B,C的对边,若a=8,B=60°,C=75°,求b的值以及△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=cos(2x-
3
)+2cos2x

(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)已知△ABC中,角A,B,C的对边分别为a,b,c.若f(B+C)=
3
2
,b+c=2,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,b=2,c=
3
,三角形面积S=
3
2
,则∠A=
π
3
3
π
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,(
AB
BC
):(
BC
CA
):(
CA
AB
)=1:2:3
,则△ABC的形状为(  )

查看答案和解析>>

同步练习册答案