精英家教网 > 高中数学 > 题目详情
11.已知tanα=2,求下列各式的值.
(1)$\frac{sinα-4cosα}{5sinα+2cosα}$;     
(2)4sin2α-3sinαcosα-5cos2α.

分析 (1)由条件利用同角三角函数的基本关系,求得要求式子的值.
(2)根据tanα=2,利用同角三角函数的基本关系,把要求的式子化为$\frac{{4tan}^{2}α-3tanα-5}{{tan}^{2}α+1}$,可得结果.

解答 解:(1)∵tanα=2,∴$\frac{sinα-4cosα}{5sinα+2cosα}$=$\frac{tanα-4}{5tanα+2}$=$\frac{2-4}{10+2}$=-$\frac{1}{6}$.
(2)∵tanα=2,∴4sin2α-3sinαcosα-5cos2α
=$\frac{{4sin}^{2}α-3sinαcosα-{5cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{4tan}^{2}α-3tanα-5}{{tan}^{2}α+1}$=$\frac{16-6-5}{4+1}$=1.

点评 本题主要考查同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设a,b∈R,且a≠1,若奇函数f(x)=lg$\frac{1+ax}{1+x}$在区间(-b,b)上有定义.
(1)求a的值;
(2)求b的取值范围.
(3)求解不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一种分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,写出集合A={a,b}的不同分拆.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x||x|<3},B={-1,0,1,2,3,4},则A∩B=(  )
A.{0,1,2}B.{0,1,2,3}C.{-1,0,1,2}D.{-1,0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)是定义域为R的偶函数,当x>0时,f(x)=x2-4x,则f(x+2)<5的解集是(-7,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知等差数列{an}的前n项和为Sn,若a3=5,a5=3,则an=8-n,S7=28.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知关于x的方程e-|x|+kx-1=0有2个不相等的实数根,则k的取值范围是(-1,0)∪(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设二次函数f(x)=ax2-2x+c(x∈R)的值域为[0,+∞),则$\frac{1}{c+1}$+$\frac{4}{a+4}$的最大值为(  )
A.$\frac{3}{2}$B.$\frac{4}{3}$C.$\frac{5}{4}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设a=log${\;}_{\frac{1}{2}}$3,b=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,c=($\frac{1}{2}$)0.3,则(  )
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

同步练习册答案