精英家教网 > 高中数学 > 题目详情
△ABC中,点E为AB边的中点,点F为AC边的中点,BF交CE于点G,若
AG
=x
AE
+y
AF
,则x+y等于
 
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:如图所示,由点E为AB边的中点,点F为AC边的中点,可得G为△ABC的重心.因此
AG
=
2
3
×
1
2
(
AB
+
AC
)
=
2
3
AE
+
2
3
AF
.即可得出.
解答: 解:如图所示,
∵点E为AB边的中点,点F为AC边的中点,
∴G为△ABC的重心.
AG
=
2
3
×
1
2
(
AB
+
AC
)
=
2
3
AE
+
2
3
AF

∴x+y=
4
3

故答案为:
4
3
点评:本题考查了向量共线定理、三角形的重心定理、向量基本定理,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+ax2+bx(其中a、b为常数且a≠0)在x=1处取得极值.
(1)当a=1时,求f(x)的极大值点和极小值点;
(2)若f(x)在(0,e]上的最大值为1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的方程为y2=4x,过其焦点F的直线l与抛物线交于A,B两点,若S△AOF=3S△BOF(O为坐标原点),则|AB|=(  )
A、
16
3
B、
8
3
C、
4
3
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

2i
1-i
2=(  )
A、-2iB、-4i
C、2iD、4i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的方程为y2=2px(p>0),圆M的方程为x2+y2+8x+12=0,如果该抛物线C的准线与圆M相切,则p的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1和双曲线C2有公共焦点F1,F2,C1的离心率为e1,C2离心率为e2,p为C1与C2的一个公共点,且满足
1
e12
+
1
e22
=2,则
PF1
PF2
的值为(  )
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
1
2
x2+a(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为l.
(Ⅰ)求直线l的方程及a的值;
(Ⅱ)当k>0时,试讨论方程f(1-x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+bx+c,且f(-1)=f(3),则(  )
A、f(-1)<c<f(1)
B、c<f(-1)<f(1)
C、f(1)<f(-1)<c
D、f(1)<c<f(-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},满足a1=2,an+1=
2an
an+2

(1)数列{
1
an
}是否为等差数列?说明理由.
(2)求{an}的通项公式.

查看答案和解析>>

同步练习册答案