精英家教网 > 高中数学 > 题目详情
8.在Rt△ABC中,∠ACB=90°,AC=1,BC=2,CD是∠ACB的角平分线(如图①).若沿直线CD将△ABC折成直二面角B-CD-A(如图②).则折叠后A,B两点间的距离为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

分析 过A作CD的垂线AG,过B作CD的延长线的垂线BH,利用两条异面直线上两点间的距离公式求解.

解答 解:∵CD是∠ACB的角平分线,∴∠ACD=∠BCD=45°,
过A作CD的垂线AG,过B作CD的延长线的垂线BH,
∴AG=sin45°=$\frac{\sqrt{2}}{2}$,BH=2cos45°=$\sqrt{2}$,
CG=cos45°=$\frac{\sqrt{2}}{2}$,CH=2sin45°=$\sqrt{2}$,
则HG=CH-CG=$\sqrt{2}-\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{2}$,
∴|AB|=$\sqrt{A{G}^{2}+B{H}^{2}+H{G}^{2}}$
=$\sqrt{\frac{1}{2}+2+\frac{1}{2}}$
=$\sqrt{3}$. 
故选:B

点评 本题考查平面与平面之间的位置关系,考查了两条异面直线上两点间的距离,运用数学转化思想方法是解答该题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AD∥BC,∠BCD=90°,AD=CD=1,BC=2,又PC=1,∠PCB=120°,PB⊥CD,点E在棱PD上,且PE=2ED.
(Ⅰ)求证:平面PCD⊥平面PBC;
(Ⅱ)求证:PB∥平面AEC;
(Ⅲ)求四面体E-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,在长方体ABCD-A1B1C1D1中,BC=2AB=4,$A{A_1}=2\sqrt{2}$,E是A1D1的中点.
(Ⅰ)在平面A1B1C1D1内,请作出过点E与CE垂直的直线l,并证明l⊥CE;
(Ⅱ)设(Ⅰ)中所作直线l与CE确定的平面为α,求点C1到平面α的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图1,在平行四边形ABB1A1中,∠ABB1=60°,AB=4,AA1=2,C,C1分别为AB,A1B1的中点,现把平行四边形ABB1A1沿CC1折起如图2所示,连接B1C,B1A,B1A1
(1)求证:AB1⊥CC1
(2)若AB1=$\sqrt{6}$,求二面角C-AB1-A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,⊙O的弦ED,CB的延长线交于点A.
(1)若BD⊥AE,AB=4,BC=2,AD=3,求CE的长;
(2)若$\frac{AB}{AC}$=$\frac{1}{2}$,$\frac{AD}{AE}$=$\frac{1}{3}$,求$\frac{BD}{EC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.半径为5的球被一个平面所截,截面面积为16π,则球心到截面的距离为(  )
A.4B.3.5C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若不等式ax2+bx+c≤0的解集为{x|x≤1或x≥2},则点P(b,c)的轨迹是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.四棱锥P-ABCD中,PD⊥平面ABCD,2AD=BC=2a(a>0),AD∥BC,PD=$\sqrt{3}$a,∠DAB=θ
(Ⅰ)若θ=60°,AB=2a,Q为PB的中点,求证:DQ⊥PC;
(Ⅱ)若θ=90°,AB=$\sqrt{3}$a,M为BC中点,试在PC上找一点N,使PA∥平面DMN.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(2x-1)的定义域为[-1,4],则函数f(x)的定义域为(  )
A.(-3,7]B.[-3,7]C.(0,$\frac{5}{2}$]D.[0,$\frac{5}{2}$)

查看答案和解析>>

同步练习册答案