【题目】已知椭圆
的中心在原点,离心率等于
,它的一个短轴端点恰好是抛物线
的焦点
(1)求椭圆
的方程;
(2)已知
、
是椭圆上的两点,
,
是椭圆上位于直线
两侧的动点.①若直线
的斜率为
,求四边形
面积的最大值;
②当
,
运动时,满足
,试问直线
的斜率是否为定值,请说明理由
![]()
【答案】(1)
(2)![]()
【解析】试题分析: (1)由椭圆的离心率及短轴端点坐标求出
,得到椭圆方程; (2)①设
设直线AB方程为
,联立直线与椭圆方程,消去
,得到一个关于
的二次方程,求出
,再求出
,代入三角形面积公式,求出最大值; ②由
得到直线
斜率之和为0,设直线
斜率为
,则直线
斜率为
,直线
方程为
,代入椭圆方程中,求出
的表达式,同理求出
的表达式,再求出
的值,代入直线
的斜率计算公式中,结果为定值.
试题解析:(1)
∴
∴
又 ![]()
∴
∴ 椭圆方程为
(2)①设
, ![]()
设
方程
代入化简
,
又
、
![]()
当
时,
最大为
②当
时,
、
斜率之和为
.
设
斜率为
,则
斜率为
设
方程
代入化简
同理
,
∴![]()
直线
的斜率为定值![]()
点睛:本题主要考查了椭圆的标准方程及性质,直线与椭圆相交问题,一元二次方程根与系数关系,斜率的计算公式,考查了推理与计算能力, 属于难题.
科目:高中数学 来源: 题型:
【题目】某厂生产的产品在出厂前都要做质量检测,每件一等品都能通过检测,每件二等品通过检测的概率为
.现有
件产品,其中
件是一等品,
件是二等品.
(Ⅰ)随机选取
件产品,设至少有一件通过检测为事件
,求事件
的概率;
(Ⅱ)随机选取
件产品,其中一等品的件数记为
,求
的分布列及数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位职工义务献血,在体检合格的人中,
型血的共有28人,
型血的共有7人,
型血的共有9人,
型血的有3人.
(1)从中任选1人去献血,有多少种不同的选法?
(2)从四种血型的人中各选1人去献血,有多少种不同的选法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近几年来,我国许多地区经常出现干旱现象,为抗旱经常要进行人工降雨,现由天气预报得知,某地在未来5天的指定时间的降雨概率是:前3天均为
,后2天均为
,5天内任何一天的该指定时间没有降雨,则在当天实行人工降雨,否则,当天不实施人工降雨.
(1)求至少有1天需要人工降雨的概率;
(2)求不需要人工降雨的天数
的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
=(cosωx,sinωx),
=(cosωx,
cosωx),其中ω>0,设函数f(x)=
.
(1)若函数f(x)的最小正周期是π,求函数f(x)的单调递增区间;
(2)若函数f(x)的图象的一个对称中心的横坐标为
,求ω的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
,
(
).
(Ⅰ)求函数
的单调增区间;
(Ⅱ)当
时,记
,是否存在整数
,使得关于
的不等式
有解?若存在,请求出
的最小值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com