精英家教网 > 高中数学 > 题目详情
7.如图是计算某年级500名学生期末考试(满分为100分)及格率q的程序框图,则图中空白框内应填入$q=\frac{M}{M+N}$.

分析 通过题意与框图的作用,即可判断空白框内应填入的表达式.

解答 解:由题意以及框图可知,计算某年级500名学生期末考试(满分为100分)及格率q的程序框图,
所以输出的结果是及格率,所以图中空白框内应填入q=$\frac{M}{M+N}$.
故答案为:$q=\frac{M}{M+N}$.

点评 本题考查循环框图的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在极坐标系中,若过点(2,0)且与极轴垂直的直线交曲线ρ=8cosθ于A、B两点,则|AB|=(  )
A.$4\sqrt{3}$B.$2\sqrt{7}$C.$2\sqrt{3}$D.$2\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设命题p:f(x)=$\frac{2}{x-m}$在区间(1,+∞)上是减函数;命题q:2x-1+2m>0对任意x∈R恒成立.若(¬p)∧q为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某商品在销售过程中投入的销售时间x与销售额y的统计数据如表:
销售时间x(月)12345
销售额y(万元)0.40.50.60.60.4
用线性回归分析的方法预测该商品6月份的销售额.
(参考公式:$\stackrel{∧}{b}$=$\stackrel{∧}{a}$x,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$表示样本平均值)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图所示的流程图中,输出的S为$\frac{25}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义在R上的偶函数f(x)满足f(x+2)-f(x)=0,且在[-1,0]上单调递增,设a=f(log32),b=f(log${\;}_{\frac{1}{27}}$2),c=f($\frac{19}{12}$),则a,b,c的大小关系是(  )
A.a>b>cB.a>c>bC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某班4名学生的数学和物理成绩如表:
学生
学科
ABCD
数学成绩(x)86736963
物理成绩(y)76716459
(1)求物理成绩y对数学成绩x的线性回归方程;
(2)一名学生的数学成绩是90分,试预测他的物理成绩.
附:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$   $\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知P、M、N是单位圆上互不相同的三个点,且满足|$\overrightarrow{PM}$|=|$\overrightarrow{PN}$|,则$\overrightarrow{PM}$•$\overrightarrow{PN}$的最小值是-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ex-e-x
(Ⅰ)判断函数f(x)的奇偶性和单调性,并说明理由;
(Ⅱ)若f(x2)+f(kx+1)>0对任意x∈R恒成立,求k的取值范围.

查看答案和解析>>

同步练习册答案