精英家教网 > 高中数学 > 题目详情
13.已知数列{an}满足:a1=1,a2=$\frac{1}{2}$,$\frac{2}{{{a_{n+1}}}}$=$\frac{1}{a_n}+\frac{1}{{{a_{n+2}}}}$(n∈N*),则a2015=$\frac{1}{2015}$.

分析 由$\frac{2}{{{a_{n+1}}}}$=$\frac{1}{a_n}+\frac{1}{{{a_{n+2}}}}$,得$\frac{1}{{a}_{n}+2}-\frac{1}{{a}_{n}+1}=\frac{1}{{a}_{n}+1}-\frac{1}{{a}_{n}}$,求出{ $\frac{1}{{a}_{n}}$}为等差数列.又$\frac{1}{{a}_{1}}=1$,d=1,求出an=$\frac{1}{n}$,则答案可求.

解答 解:由$\frac{2}{{{a_{n+1}}}}$=$\frac{1}{a_n}+\frac{1}{{{a_{n+2}}}}$,得$\frac{1}{{a}_{n}+2}-\frac{1}{{a}_{n}+1}=\frac{1}{{a}_{n}+1}-\frac{1}{{a}_{n}}$,
∴{ $\frac{1}{{a}_{n}}$}为等差数列.又$\frac{1}{{a}_{1}}=1$,d=$\frac{1}{{a}_{2}}-\frac{1}{{a}_{1}}$=1,
∴$\frac{1}{{a}_{n}}$=n,
∴an=$\frac{1}{n}$.
∴a2015=$\frac{1}{2015}$.
故答案为:$\frac{1}{2015}$.

点评 本题考查了等差数列的通项公式,考查了数列递推式,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知$f(x)=\left\{{\begin{array}{l}{2,\;0<x≤10}\\{3,\;10<x≤15}\\{4,\;15<x≤20}\end{array}}\right.$,$g(x)=5sin\frac{π}{60}x$,则函数F(x)=f(x)-g(x)(0<x≤20)的零点个数有(  )
A.1个B.2个C.3 个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下例说法正确的是(  )
A.在研究身高和体重的相关性中,R2=0.64,表明身高解释了$\begin{array}{l}64%\end{array}$的体重变化
B.若a,b,c∈R,有(ab)•c=a•(bc),类比此结论,若向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,有($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{b}$•$\overrightarrow{c}$),
C.在吸烟与患肺癌是否相关的判断中,由独立性检验可知,在犯错误的概率不超过0.01的前提下,认为吸烟与患肺癌有关系,那么在100个吸烟的人中,必有99个人患肺癌
D.若a,b∈R,则a-b>0⇒a>b,类比推出若a,b∈C,则a-b>0⇒a>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知定义在R上的奇函数f(x)=$\left\{\begin{array}{l}{{2}^{-x}-1,0≤x<1}\\{{x}^{\frac{1}{2}}-\frac{3}{2},x≥1}\end{array}\right.$,则f(f(-1))=$\frac{\sqrt{2}}{2}$-1,若f(a)>0,则实数a的取值范围是(-$\frac{9}{4}$,0)∪($\frac{9}{4}$,+∞),.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题中错误的是(  )
A.命题“若x2-5x+6=0,则x=2”的逆否命题是“若x≠2,则x2-5x+6≠0”
B.对命题p:?x∈R,使得x2+x+1<0,则?p:?x∈R,x2+x+1≥0
C.若x,y∈R,则“x=y”是“xy≥($\frac{x+y}{2}$)2中等号成立”的充要条件
D.已知命题p和q,若p∨q为假命题,则命题p与q中必一真一假

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.△ABC的三边长为5,7,8,其外接圆半径为$\frac{{7\sqrt{3}}}{3}$,内切圆半径为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a,b为正实数,且a+b=1,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为4此时a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆E:$\frac{x^2}{4}+\frac{y^2}{2}$=1,直线l交椭圆于A,B两点,若AB的中点坐标为(1,-$\frac{1}{2}$),则l的方程为x-2y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)求过点(1,3)且在两坐标轴上截距相等的直线方程
(2)求到直线2x+3y-5=0和4x+6y+8=0的距离相等点的轨迹.

查看答案和解析>>

同步练习册答案