精英家教网 > 高中数学 > 题目详情
设抛物线y2=4x的焦点为F,经过焦点的直线与抛物线交于A,B两点,且AB的中点横坐标为2,则|AF|+|BF|的值是(  )
分析:利用抛物线的定义,将|AF|+|BF|转化为A,B两点分别到准线的距离之和,再利用梯形中位线的性质即可.
解答:解:设抛物线上的点A,B在抛物线y2=4x的准线x=-1上的射影分别为M,N,
由抛物线的定义得:|AF|=|AM|,|BF|=|BN|,
∴|AF|+|BF|=|AM|+|BN|,
又AB的中点P横坐标为2,设P在抛物线y2=4x的准线x=-1上的射影为Q,则|PQ|=2-(-1)=3,
显然,PQ为梯形AMNB的中位线,
∴|AM|+|BN|=2|PQ|=6,
∴|AF|+|BF|=6.
故选C.
点评:本题考查抛物线的简单性质,突出抛物线的定义的考查,突出转化思想与梯形中位线的性质的考查,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设抛物线y2=4x的焦点为F,过点M(-1,0)的直线在第一象限交抛物线于A、B,使
AF
BF
=0
,则直线AB的斜率k=(  )
A、
2
B、
2
2
C、
3
D、
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=4x的焦点为F,过点F的直线与抛物线交于A,B两点,过AB的中点M作准线的垂线与抛物线交于点P,若|PF|=
3
2
,则弦长|AB|等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=4x的焦点为F,过点M(
1
2
,0)
的直线与抛物线相交于A,B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比
S△BCF
S△ACF
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线 y2=4x的一条弦AB以P(
32
,1)
为中点,则该弦所在直线的斜率为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区一模)在平面直角坐标系xoy中,设抛物线y2=4x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的倾斜角为120°,那么|PF|=
4
4

查看答案和解析>>

同步练习册答案