精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)的区间[2t,t+1]上单调,求实数t的取值范围;
(3)记g(x)=f(x)+4(1-m)x,对于任意的实数x1,x2∈[-1,1],恒有|g(x1)-g(x2)|≤8成立,求实数m的取值范围.
考点:函数恒成立问题,函数解析式的求解及常用方法,二次函数的性质,二次函数在闭区间上的最值
专题:综合题,分类讨论,函数的性质及应用
分析:(1)由已知可设函数的顶点式f(x)=a(x-1)2+1(a>0),再由f(0)=3可得a;
(2)由题意可知区间在对称轴的一侧,由此可得不等式;
(3)对于任意的实数x1,x2∈[-1,1],恒有|g(x1)-g(x2)|≤8,等价于g(x)max-g(x)min≤8,根据对称轴与区间的位置关系分情况讨论可求得最值,再解不等式即可;
解答: 解:(1)∵f(0)=f(2),
∴f(x)的对称轴为x=1,
又f(x)的最小值为1,
∴设f(x)=a(x-1)2+1(a>0),
则f(0)=a+1=3,解得a=2,
∴f(x)=2(x-1)2+1;
(2)由题意,得2t≥1或t+1≤1,
解得t
1
2
或t≤0;
(3)g(x)=f(x)+4(1-m)x=2x2-4mx+3,
对于任意的实数x1,x2∈[-1,1],恒有|g(x1)-g(x2)|≤8,等价于g(x)max-g(x)min≤8,
①当m≤-1时,g(x)max=g(1)=5-4m,g(x)min=g(-1)=5+4m,
∴(5-4m)-(5+4m)≤8,即-8m≤8,解得m≥-1,
∴m=-1;
②当m≥1时,g(x)max=g(-1)=5+4m,g(x)min=g(1)=5-4m,
∴(5+4m)-(5-4m)≤8,即8m≤8,解得m≤1,
∴m=1;
③当-1<m≤0时,g(x)max=g(1)=5-4m,g(x)min=g(m)=3-2m2
∴(5-4m)-(3-2m2)≤8,即m2-2m-3≤0,解得-1≤m≤3,
∴-1<m≤0;
④当0<m<1时,g(x)max=g(-1)=5+4m,g(x)min=g(m)=3-2m2
∴(5+4m)-(3-2m2)≤8,即-3≤m≤1,
∴0<m<1;
综上所述,实数m的取值范围是[-1,1].
点评:本题考查了用待定系法求二次函数解析式的方法,关键是选择适当的形式;研究二次函数的单调性主要是研究对称轴与区间的关系.考查二次函数在给定区间上的最值,考查分类讨论思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二元函数f(x,θ)=
xcosθ
x2+xsinθ+2
(x∈R,θ∈R),则f(x,θ)的最大值和最小值分别为(  )
A、
7
7
,-
7
7
B、
7
,-
7
7
C、2
2
,-2
2
D、2
2
,-
2
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-1-lnx(a∈R).
(1)当a=1时,求曲线在点(1,0)处的切线方程;
(2)求函数f(x)在区间[
1
2
,2]上的最小值;
(3)证明不等式:2•
4
3
8
7
2n
2n-1
<e 
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinxcosx-cos2x-
1
2

(1)求函数f(x)的单调减区间.
(2)设△ABC中,c=3,f(C)=0,若sin(A+C)=2sinA,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a≠0,函数f(x)=
2x+a , x<1
-x-2a, x≥1

(1)若a=-3,求f(10),f(f(10))的值;
(2)若f(1-a)=f(1+a),求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2+cx在x=2处取得极值4,且其导函数y=f′(x)的图象经过坐标原点.
(1)求函数y=f(x)的解析式;
(2)若x∈[-3,3],求y=f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,E点为DD1中点.
(1)求证:平面ACE⊥平面BDD1
(2)求证:BD1∥平面ACE.
(3)求二面角E-AC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△ABC中,∠C=30°,∠B=90°,D为AC中点,E为BD的中点,AE的延长线交BC于F,将△ABD沿BD折起至△PBD,使∠PDC=90°.

(Ⅰ)求证:PF⊥平面BCD;
(Ⅱ)求直线PC与平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论中正确命题的个数是
 

①命题p:“?x∈R,x2-2≥0”的否定形式是?p:?x∈R,x2-2<0;
②若?p是q的必要条件,则p是?q的充分条件;
③“M>N”是“(
3
4
)M>(
3
4
)N
”的充分不必要条件.

查看答案和解析>>

同步练习册答案