16£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬ÒÔxÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=2$\sqrt{2}$£®
£¨1£©Ð´³öC1µÄÆÕͨ·½³ÌºÍC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèµãPÔÚC1ÉÏ£¬µãQÔÚC2ÉÏ£¬Çó|PQ|µÄ×îСֵ¼°´ËʱPµÄÖ±½Ç×ø±ê£®

·ÖÎö £¨1£©ÔËÓÃÁ½±ßƽ·½ºÍͬ½ÇµÄƽ·½¹ØÏµ£¬¼´¿ÉµÃµ½C1µÄÆÕͨ·½³Ì£¬ÔËÓÃx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬ÒÔ¼°Á½½ÇºÍµÄÕýÏÒ¹«Ê½£¬»¯¼ò¿ÉµÃC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÓÉÌâÒâ¿ÉµÃµ±Ö±Ïßx+y-4=0µÄƽÐÐÏßÓëÍÖÔ²ÏàÇÐʱ£¬|PQ|È¡µÃ×îÖµ£®ÉèÓëÖ±Ïßx+y-4=0ƽÐеÄÖ±Ïß·½³ÌΪx+y+t=0£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃÅбðʽΪ0£¬ÇóµÃt£¬ÔÙÓÉÆ½ÐÐÏߵľàÀ빫ʽ£¬¿ÉµÃ|PQ|µÄ×îСֵ£¬½â·½³Ì¿ÉµÃPµÄÖ±½Ç×ø±ê£®
ÁíÍ⣺ÉèP£¨$\sqrt{3}$cos¦Á£¬sin¦Á£©£¬Óɵ㵽ֱÏߵľàÀ빫ʽ£¬½áºÏ¸¨Öú½Ç¹«Ê½ºÍÕýÏÒº¯ÊýµÄÖµÓò£¬¼´¿ÉµÃµ½ËùÇó×îСֵºÍPµÄ×ø±ê£®

½â´ð ½â£º£¨1£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬
ÒÆÏîºóÁ½±ßƽ·½¿ÉµÃ$\frac{{x}^{2}}{3}$+y2=cos2¦Á+sin2¦Á=1£¬
¼´ÓÐÍÖÔ²C1£º$\frac{{x}^{2}}{3}$+y2=1£»
ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=2$\sqrt{2}$£¬
¼´ÓЦѣ¨$\frac{\sqrt{2}}{2}$sin¦È+$\frac{\sqrt{2}}{2}$cos¦È£©=2$\sqrt{2}$£¬
ÓÉx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬¿ÉµÃx+y-4=0£¬
¼´ÓÐC2µÄÖ±½Ç×ø±ê·½³ÌΪֱÏßx+y-4=0£»
£¨2£©ÓÉÌâÒâ¿ÉµÃµ±Ö±Ïßx+y-4=0µÄƽÐÐÏßÓëÍÖÔ²ÏàÇÐʱ£¬
|PQ|È¡µÃ×îÖµ£®
ÉèÓëÖ±Ïßx+y-4=0ƽÐеÄÖ±Ïß·½³ÌΪx+y+t=0£¬
ÁªÁ¢$\left\{\begin{array}{l}{x+y+t=0}\\{{x}^{2}+3{y}^{2}=3}\end{array}\right.$¿ÉµÃ4x2+6tx+3t2-3=0£¬
ÓÉÖ±ÏßÓëÍÖÔ²ÏàÇУ¬¿ÉµÃ¡÷=36t2-16£¨3t2-3£©=0£¬
½âµÃt=¡À2£¬
ÏÔÈ»t=-2ʱ£¬|PQ|È¡µÃ×îСֵ£¬
¼´ÓÐ|PQ|=$\frac{|-4-£¨-2£©|}{\sqrt{1+1}}$=$\sqrt{2}$£¬
´Ëʱ4x2-12x+9=0£¬½âµÃx=$\frac{3}{2}$£¬
¼´ÎªP£¨$\frac{3}{2}$£¬$\frac{1}{2}$£©£®
Áí½â£ºÉèP£¨$\sqrt{3}$cos¦Á£¬sin¦Á£©£¬
ÓÉPµ½Ö±ÏߵľàÀëΪd=$\frac{|\sqrt{3}cos¦Á+sin¦Á-4|}{\sqrt{2}}$
=$\frac{|2sin£¨¦Á+\frac{¦Ð}{3}£©-4|}{\sqrt{2}}$£¬
µ±sin£¨¦Á+$\frac{¦Ð}{3}$£©=1ʱ£¬|PQ|µÄ×îСֵΪ$\sqrt{2}$£¬
´Ëʱ¿ÉÈ¡¦Á=$\frac{¦Ð}{6}$£¬¼´ÓÐP£¨$\frac{3}{2}$£¬$\frac{1}{2}$£©£®

µãÆÀ ±¾Ì⿼²é²ÎÊý·½³ÌºÍÆÕͨ·½³ÌµÄ»¥»¯¡¢¼«×ø±êºÍÖ±½Ç×ø±êµÄ»¥»¯£¬Í¬Ê±¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬Ö÷ÒªÊÇÏàÇУ¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÇؾÅÉØÊÇÎÒ¹úÄÏËÎʱÆÚµÄÊýѧ¼Ò£¬ÆÕÖÝ£¨ÏÖËÄ´¨Ê¡°²ÔÀÏØ£©ÈË£¬ËûÔÚËùÖøµÄ¡¶ÊýÊé¾ÅÕ¡·ÖÐÌá³öµÄ¶àÏîʽÇóÖµµÄÇØ¾ÅÉØËã·¨£¬ÖÁ½ñÈÔÊDZȽÏÏȽøµÄËã·¨£®ÈçͼËùʾµÄ³ÌÐò¿òͼ¸ø³öÁËÀûÓÃÇØ¾ÅÉØËã·¨Çóij¶àÏîʽֵµÄÒ»¸öʵÀý£¬ÈôÊäÈën£¬xµÄÖµ·Ö±ðΪ3£¬2£¬ÔòÊä³övµÄֵΪ£¨¡¡¡¡£©
A£®9B£®18C£®20D£®35

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªÖ±Ïßl£ºx-$\sqrt{3}$y+6=0ÓëÔ²x2+y2=12½»ÓÚA£¬BÁ½µã£¬¹ýA£¬B·Ö±ð×÷lµÄ´¹ÏßÓëxÖá½»ÓÚC£¬DÁ½µã£®Ôò|CD|=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èôz=1+2i£¬Ôò$\frac{4i}{z\overline{z}-1}$=£¨¡¡¡¡£©
A£®1B£®-1C£®iD£®-i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªOÎª×ø±êÔ­µã£¬FÊÇÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×󽹵㣬A£¬B·Ö±ðΪCµÄ×ó£¬ÓÒ¶¥µã£®PΪCÉÏÒ»µã£¬ÇÒPF¡ÍxÖᣬ¹ýµãAµÄÖ±ÏßlÓëÏß¶ÎPF½»ÓÚµãM£¬ÓëyÖá½»ÓÚµãE£®ÈôÖ±ÏßBM¾­¹ýOEµÄÖе㣬ÔòCµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{1}{2}$C£®$\frac{2}{3}$D£®$\frac{3}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Ä³´ÎÌå¼ì£¬6λͬѧµÄÉí¸ß£¨µ¥Î»£ºÃ×£©·Ö±ðΪ1.72£¬1.78£¬1.75£¬1.80£¬1.69£¬1.77£¬ÔòÕâ×éÊý¾ÝµÄÖÐλÊýÊÇ1.76£¨Ã×£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Ë«ÇúÏßx2-$\frac{{y}^{2}}{{b}^{2}}$=1£¨b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬Ö±Ïßl¹ýF2ÇÒÓëË«ÇúÏß½»ÓÚA£¬BÁ½µã£®
£¨1£©Ö±ÏßlµÄÇãб½ÇΪ$\frac{¦Ð}{2}$£¬¡÷F1ABÊǵȱßÈý½ÇÐΣ¬ÇóË«ÇúÏߵĽ¥½üÏß·½³Ì£»
£¨2£©Éèb=$\sqrt{3}$£¬ÈôlµÄбÂÊ´æÔÚ£¬ÇÒ£¨$\overrightarrow{{F}_{1}A}$+$\overrightarrow{{F}_{1}B}$£©•$\overrightarrow{AB}$=0£¬ÇólµÄбÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èôº¯Êýy=f£¨x£©µÄͼÏóÉÏÿһ¸öµãµÄ×Ý×ø±ê±£³Ö²»±ä£¬ºá×ø±êÉ쳤µ½Ô­À´µÄ2±¶£¬È»ºóÔÙ½«Õû¸öͼÏóÑØxÖáÏò×óÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»³¤¶È£¬×îºó½«µÃµ½µÄº¯ÊýͼÏóÑØyÖáÏòÏÂÆ½ÒÆ1¸öµ¥Î»³¤¶È£¬×îºóµÃµ½º¯Êýy=$\frac{1}{2}$sinxµÄͼÏó£¬Ôòº¯Êýf£¨x£©µÄ½âÎöʽΪ£©=$\frac{1}{2}$sin£¨2x-$\frac{¦Ð}{3}$£©+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªSÊÇÊý¼¯£¬Èô¶ÔÈÎÒâa¡¢b¡ÊS¶¼ÓÐa+b¡¢a-b£¬ab¡¢$\frac{a}{b}$£¨b¡Ù0£©¡ÊS£¬Ôò³ÆSÊÇÊýÓò£®ÏÂÁÐËĸöÊý¼¯ÖУ¬ÊýÓòµÄ¸öÊýÊÇ£¨¡¡¡¡£©
¢ÙÕûÊý¼¯Z£»¢ÚÓÐÀíÊý¼¯Q£»¢ÛʵÊý¼¯R£»¢ÜÊý¼¯F={a+$\sqrt{2}$b|a£¬b¡ÊQ}£®
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸