精英家教网 > 高中数学 > 题目详情
7.已知a,b为非零实数,且a>b,则下列命题成立的是(  )
A.a2>b2B.|a|>|b|C.($\frac{1}{2}$)a<($\frac{1}{2}$)bD.$\frac{b}{a}<1$

分析 根据不等式的基本性质,结合已知中a>b,逐一分析四个答案中的不等式是否一定成立,可得答案.

解答 解:∵a,b∈R且a>b,
由于a,b符号不确定,故a2与b2的大小不能确定,故A不一定成立;
由于a,b符号不确定,故|a|与|b|的大小不能确定,故B不一定成立;
由于y=$(\frac{1}{2})^{x}$为减函数,故($\frac{1}{2}$)a<($\frac{1}{2}$)b成立,即C一定成立;
不等式两边同除a,但a的符号不确定,$\frac{b}{a}与1$的大小不能确定,故D不一定成立;
故选:C.

点评 本题考查的知识点是不等式的基本性质,熟练掌握不等式的基本性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{5}{2}ln({x^2}+1)-2x$.
(Ⅰ)求此函数f(x)的单调区间;
(Ⅱ)设g(x)=$\frac{5}{2}ln\frac{x}{{{x^2}+1}}$+f(x)+2x.是否存在直线y=kx(k∈R)与函数g(x)的图象相切?若存在,请求出k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知复数z=1-i,若ω=$\frac{{z}^{2}-2z+1}{z}$,则ω等于$-\frac{1}{2}$$-\frac{1}{2}$i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知复数z满足(1-i)z=2+i,则z的实部为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知变量x,y具有线性相关关系,在某次试验中测得(x,y)的4组值为(0,2),(3,3),(-3,0),(6,5),则y与x之间的回归方程为(  )
A.$\widehat{y}$=$\frac{8}{15}x+\frac{17}{10}$B.$\widehat{y}$=$\frac{17}{10}x+\frac{8}{15}$C.$\widehat{y}$=$\frac{39}{29}x+\frac{93}{58}$D.$\widehat{y}$=$\frac{93}{58}x+\frac{39}{29}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知示数x,y满足$\left\{\begin{array}{l}{x+y≥0}\\{x-y+2≥0}\\{2x+y-4≤0}\end{array}\right.$,则目标函数z=3x+y的最大值和最小值分别是(  )
A.6,-2B.8,-2C.6,-4D.8,-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.甲、乙、丙三人随机站成一排照相,则出现甲、乙相邻且甲在乙左边的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{6}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知i是虚数单位,则$\frac{2+i}{1-i}$等于(  )
A.$\frac{1}{2}$+$\frac{3}{2}$iB.$\frac{3}{2}$+$\frac{3}{2}$iC.$\frac{\sqrt{2}}{2}$+$\frac{3\sqrt{2}}{2}$iD.$\frac{3\sqrt{2}}{2}$+$\frac{3\sqrt{2}}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设i是虚数单位,复数$\frac{5i}{1+2i}$=2+i.

查看答案和解析>>

同步练习册答案