精英家教网 > 高中数学 > 题目详情
16.已知i是虚数单位,则$\frac{2+i}{1-i}$等于(  )
A.$\frac{1}{2}$+$\frac{3}{2}$iB.$\frac{3}{2}$+$\frac{3}{2}$iC.$\frac{\sqrt{2}}{2}$+$\frac{3\sqrt{2}}{2}$iD.$\frac{3\sqrt{2}}{2}$+$\frac{3\sqrt{2}}{2}$i

分析 根据复数的基本运算法则进行计算即可.

解答 解:$\frac{2+i}{1-i}$=$\frac{(2+i)(1+i)}{(1-i)(1+i)}$=$\frac{1+3i}{2}$=$\frac{1}{2}$+$\frac{3}{2}$i,
故选:A

点评 本题主要考查复数的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.下列说法正确的是(  )
A.函数y=x+$\frac{2}{x}$的最小值为2$\sqrt{2}$
B.函数y=sinx+$\frac{2}{sinx}$(0<x<π)的最小值为2$\sqrt{2}$
C.函数y=|x|+$\frac{2}{|x|}$的最小值为2$\sqrt{2}$
D.函数y=lgx+$\frac{2}{lgx}$的最小值为2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a,b为非零实数,且a>b,则下列命题成立的是(  )
A.a2>b2B.|a|>|b|C.($\frac{1}{2}$)a<($\frac{1}{2}$)bD.$\frac{b}{a}<1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知Sn为等差数列{an}的前n项和,a4=4,S5=15.
(1)求数列{an}的通项公式;
(2)若等比数列{bn}满足b1=a1,b4=a27,Tn为数列{bn}的前n项和,且Tn=40.求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在($\sqrt{x}$-$\frac{1}{x}$)10的二项展开式中,含x2项的系数是(  )
A.-45B.-10C.45D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在一次抽样调查中,获得一组具有线性关系的数据(xi,yi),i=1,2,…,10,用最小二乘法得到的线性回归方程为y=$\widehat{a}$x+2,若这组数据的样本点中心为(3,4),则$\widehat{a}$=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在等比数列{an}中,若a4=1,a7=8,则公比q=(  )
A.$\frac{3}{4}$B.$\frac{3}{2}$C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}通项公式为an=Atn-1+Bn+1,其中A,B,t为常数,且t>1,n∈N*.等式(x2+x+2)10=b0+b1(x+1)+b2(x+1)2+…+b20(x+1)20,其中bi(i=0,1,2,…,20)为实常数.
(1)若A=0,B=1,求$\sum_{n=1}^{10}$anb2n的值;
(2)若A=1,B=0,且$\sum_{n=1}^{10}$(2an-2n)b2n=211-2,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=\sqrt{3}sin(ωx+φ)$$({ω>0,-\frac{π}{2}<φ<\frac{π}{2}})$的图象关于直线$x=\frac{π}{3}$对称,且图象上相邻两个最高点的距离为π.
(1)求ω和φ的值;
(2)若$f(\frac{α}{2})=\frac{{\sqrt{3}}}{2}$$({0<α<\frac{π}{2}})$,求$cos({α-\frac{π}{6}})$的值.

查看答案和解析>>

同步练习册答案