精英家教网 > 高中数学 > 题目详情
19.对任意实数k,直线(3k+2)x-ky-2=0与圆x2+y2-2x-2y-2=0的位置关系为(  )
A.相交B.相切或相离C.相离D.相交或相切

分析 根据圆的方程得到圆的半径,求出圆心到直线的距离d与半径r比较大小即可得到直线与圆的位置关系.

解答 解:把圆的方程化为标准形式得:(x-1)2+(y-1)2=22,可知圆的半径等于2,
求出圆心到直线的距离d=$\frac{|2k|}{\sqrt{(3k+2)^{2}+{k}^{2}}}≤\frac{|2k|}{\sqrt{{k}^{2}}}$=2,
所以直线与圆相切或相交.
故选D.

点评 考查学生会用圆心到直线的距离与半径比较大小的方法判断直线与圆的位置关系,以及会利用点到直线的距离的距离公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.直线$\frac{x}{4}$-$\frac{y}{3}$=1的横、纵截距分别是(  )
A.4,3B.4,-3C.$\frac{1}{4},\frac{1}{3}$D.$\frac{1}{4},-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若抛物线C:y=ax2-1(a≠0)上有不同两点关于直线l:y+x=0对称,则实数a的取值范围是($\frac{3}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知12cosθ-5sinθ=Acos(θ+φ)(A>0),则tanφ=$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.数列{an}满足an+1=$\frac{{a}_{n}^{2}-{a}_{n-1}+2{a}_{n}}{{a}_{n-1}+1}$(n=2,3,…),a2=1,a3=3,则a7=63.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}满足an+1=$\frac{a_n-4}{3}$,且a1=2,则$\underset{lim}{n→∞}$an=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知集合A={x||x|<2},B={-1,0,1,2,3},则A∩B={-1,0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.27${\;}^{-\frac{2}{3}}}$+log84=$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知x,y∈[-2,2],任取x、y,则使得(x2+y2-4)$\sqrt{x-y}$≤0的概率是(  )
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{8}$

查看答案和解析>>

同步练习册答案