精英家教网 > 高中数学 > 题目详情
9.已知集合M={x|$\frac{x-2}{x+3}$<0},集合N={x|-2≤x<3},则M∩N={x|-2≤x<2}.

分析 求出M中不等式的解集确定出M,找出M与N的交集即可.

解答 解:由M中不等式变形得:(x-2)(x+3)<0,
解得:-3<x<2,即M={x|-3<x<2},
∵N={x|-2≤x<3},
∴M∩N={x|-2≤x<2},
故答案为:{x|-2≤x<2}

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分图象,M、N是它与x轴的两个交点,D、C分别为它的最高点和最低点,点F(0,1)是线段MD的中点,$\overrightarrow{MD}$•$\overrightarrow{MN}$=$\frac{{π}^{2}}{18}$.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270.
关于上述样本的下列结论中,不正确的是(  )
A.①可能是分层抽样,也可能是系统抽样
B.②可能是分层抽样,不可能是系统抽样
C.③可能是分层抽样,也可能是系统抽样
D.④可能是分层抽样,也可能是系统抽样

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.对于函数f(x),g(x),如果它们的图象有公共点P,且在点P处的切线相同,则称函数f(x)和g(x)在点P处相切,称点P为这两个函数的切点.设函数f(x)=ax2-bx(a≠0),g(x)=lnx.
(Ⅰ)当a=-1,b=0时,判断函数f(x)和g(x)是否相切?并说明理由;
(Ⅱ)已知a=b,a>0,且函数f(x)和g(x)相切,求切点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设P:实数x满足x2-4ax+3a2?0,q:实数x满足|x-3|<1;
(1)若a=1,且PΛq为真,求实数x的取值范围;
(2)若a>0,且非P是非q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个正三棱柱的正视图是正方形,且它的外接球的表面积等于$\frac{25π}{3}$,则这个正三棱柱的底面边长为(  )
A.1B.$\sqrt{2}$C.$\frac{5\sqrt{7}}{7}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在公差不为零的等差数列{an}和等比数列{bn}中,已知a1=1且a1=b1,a2=b2,a5=b3
(1)求等差数列{an},等比数列{bn}的通项公式
(2)当Tn=$\frac{1}{{{a_n}{a_{a+1}}}}$,求数列{Tn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知sin(x-$\frac{π}{4}$)=$\frac{4}{5}$,则sin2x的值等于(  )
A.$\frac{8}{25}$B.$\frac{7}{25}$C.-$\frac{8}{25}$D.-$\frac{7}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=|x-3|+|x-4|
(Ⅰ)求函数g(x)=$\sqrt{2-f(x)}$的定义域;
(Ⅱ)若对任意的实数x,不等式f(x)≥a2-a-1恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案