精英家教网 > 高中数学 > 题目详情
6.我州某高中从高二年级甲、乙两个班种各选出7名学生参加2017年全国高中数学联赛(四川初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数a、b满足:a,G,b成等差数列且x,G,y成等比数列,则$\frac{1}{a}$+$\frac{4}{b}$的最小值为(  )
A.$\frac{4}{9}$B.2C.$\frac{9}{4}$D.8

分析 由中位数和平均数的定义,可得x,y的值,再由等差数列和等比数列中项的性质,可得a+b=4,再由$\frac{1}{a}$+$\frac{4}{b}$=$\frac{1}{4}$(a+b)($\frac{1}{a}$+$\frac{4}{b}$)=$\frac{1}{4}$(1+4+$\frac{b}{a}$+$\frac{4a}{b}$),运用基本不等式即可得到所求最小值.

解答 解:甲班学生成绩的中位数是80+x=81,得x=1;
由茎叶图可知乙班学生的总分为76+80×3+90×3+(0+2+y+1+3+6)=598+y,
又乙班学生的平均分是86,
总分又等于86×7=602.所以y=4,
若正实数a、b满足:a,G,b成等差数列且x,G,y成等比数列,
则xy=G2,2G=a+b,即有a+b=4,a>0,b>0,
则$\frac{1}{a}$+$\frac{4}{b}$=$\frac{1}{4}$(a+b)($\frac{1}{a}$+$\frac{4}{b}$)=$\frac{1}{4}$(1+4+$\frac{b}{a}$+$\frac{4a}{b}$)≥$\frac{1}{4}$(5+2$\sqrt{\frac{b}{a}•\frac{4a}{b}}$)=$\frac{1}{4}$×9=$\frac{9}{4}$,
当且仅当b=2a=$\frac{8}{3}$时,则$\frac{1}{a}$+$\frac{4}{b}$的最小值为$\frac{9}{4}$.
故选:C.

点评 本题考查基本不等式的运用:求最值,考查等差数列和等比数列的中项的性质,同时考查中位数和平均数的定义,以及运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知△ABC的内角A,B,C的对边分别为a,b,c,且$2{cos^2}\frac{C}{2}+cos2({A+B})-1=0$
(1)求C;
(2)若c=2,ab=4,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知平面向量$\overrightarrow{a},\overrightarrow{b}$满足$\overrightarrow{a}$=(1,2),|$\overrightarrow{b}$|=$\sqrt{10}$,且|2$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{14}$|,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值为(  )
A.-$\frac{2\sqrt{2}}{5}$B.-$\frac{3\sqrt{2}}{5}$C.$\frac{2\sqrt{2}}{5}$D.$\frac{3\sqrt{2}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f(θ)=$\sqrt{3}$sinθ+cosθ,其中角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P($\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),则f(θ)=(  )
A.2B.$\sqrt{3}$C.1D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设k是一个正整数,(1+$\frac{x}{k}$)k的展开式中第四项的系数为$\frac{1}{16}$,任取x∈[0,4],y∈[0,16],如图,则点(x,y)恰好落在函数y=x2与y=kx的图象所围成的阴影区域内的概率为(  )
A.$\frac{17}{96}$B.$\frac{5}{32}$C.$\frac{1}{6}$D.$\frac{7}{48}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设双曲线的实轴长为2a(a>0),一个焦点为F,虚轴的一个端点为B,如果直线FB恰好与圆x2+y2=a2相切,那么双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}+1}{2}$D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x+$\frac{1}{2}$,x∈R.
(1)若?x∈[$\frac{π}{12}$,$\frac{π}{2}$],f(x)-m=0有两个不同的根,求m的取值范围;
(2)已知△ABC的内角A、B、C的对边分别为a、b、c,若f(B)=$\frac{1}{2}$,b=2,且sinA、sinB、sinC成等差数列,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知非零向量$\overrightarrow{a}$=(sin2θ,cosθ),$\overrightarrow{b}$=(cosθ,1),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则tanθ$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=sin2x+2$\sqrt{3}$sinxcosx-cos2x.
(1)求函数f(x)的最小正周期及其图象的对称中心坐标;
(2)求函数f(x)的单调增区间及f(x)在[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

同步练习册答案