精英家教网 > 高中数学 > 题目详情
(2010•抚州模拟)在矩形ABCD中,已知AB=4,BC=3,将该矩形沿对角线AC折成直二面角D-AC-B,则四面体ABCD的外接球的体积为
125π
6
125π
6
分析:矩形ABCD中,由AB=4,BC=3,DB=AC=5,球心一定在过O且垂直于△ABC的直线上,也在过O且垂直于△DAC的直线上,这两条直线只有一个交点O 因此球半径R=
AC
2
=2.5
,由此能求出四面体ABCD的外接球的体积.
解答:解:矩形ABCD中,
∵AB=4,BC=3,
∴DB=AC=5,
设DB交AC与O,则O是△ABC和△DAC的外心,
球心一定在过O且垂直于△ABC的直线上,
也在过O且垂直于△DAC的直线上,这两条直线只有一个交点O
因此球半径R=
AC
2
=2.5

四面体ABCD的外接球的体积:
V=
4
3
×π×(2.5)3=
125π
6

故答案为:
125π
6
点评:本题考查四面体ABCD的外接球的体积的计算,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•抚州模拟)设随机变量ξ~N(μ,σ2),对非负数常数k,则P(|ξ-μ|≤kσ)的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•抚州模拟)在斜三棱柱ABC-A1B1C1中,AB=BC=2,∠ABC=120°,又顶点A1在底面ABC上的射影落在AC上,侧棱AA1与底面ABC成60°角,D为AC的中点.
(1)求证:BD⊥AA1
(2)如果二面角A1-BD-C1为直二面角,试求侧棱CC1与侧面A1ABB1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•抚州模拟)已知:数列{an},{bn}中,a1=0,b1=1,且当n∈N*时,an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列.
(1)求数列{an},{bn}的通项公式;
(2)求最小自然数k,使得当n≥k时,对任意实数λ∈[0,1],不等式(2λ-3)bn≥(2λ-4)an+(λ-3)恒成立;
(3)设dn=
1
b1
+
1
b2
+…+
1
bn
(n∈N*),求证:当n≥2都有dn2>2(
d2
2
+
d3
3
+…+
dn
n
)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•抚州模拟)设f-1(x)是函数f(x)=2x-(
1
3
x+x的反函数,则f-1(x)>1成立的x的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•抚州模拟)若集合A={x∈Z+|
x
2
Z+},B={
x
2
Z+|x∈Z+}
,则A∩B等于(  )

查看答案和解析>>

同步练习册答案