精英家教网 > 高中数学 > 题目详情
18.已知数列{an}的前n项和Sn满足an+3SnSn-1=0(n≥2,n∈N+),a1=$\frac{1}{3}$,则nan的最小值为$-\frac{1}{3}$.

分析 由题意可得数列{$\frac{1}{{S}_{n}}$}是以3为首项,以3为公差的等差数列,求出其前n项和后代入nan,然后由数列的函数特性求得nan的最小值.

解答 解:∵an+3SnSn-1=0(n≥2,n∈N+),
∴Sn-Sn-1+3SnSn-1=0,
∵a1=$\frac{1}{3}$,∴Sn•Sn-1≠0,
化简得:$\frac{1}{{S}_{n}}-\frac{1}{{S}_{n-1}}=3$,(n≥2,n∈N+),
∴数列{$\frac{1}{{S}_{n}}$}是以3为首项,以3为公差的等差数列,
则$\frac{1}{{S}_{n}}=3+3(n-1)=3n$,${S}_{n}=\frac{1}{3n}$,
从而$n{a}_{n}=n({S}_{n}-{S}_{n-1})=n(\frac{1}{3n}-\frac{1}{3(n-1)})$=$\frac{1}{3}(1-\frac{1}{1-\frac{1}{n}})\\;(n≥2)$(n≥2),
要使nan最小,则需$1-\frac{1}{n}$最小,即n=2时最小,
此时$n{a}_{n}=\frac{1}{3}(1-2)=-\frac{1}{3}$.
当n=1时,$n{a}_{n}=1×{a}_{1}=1×\frac{1}{3}=\frac{1}{3}$$>-\frac{1}{3}$,
故对任意n∈N*,nan的最小值为$-\frac{1}{3}$.

点评 本题考查了数列递推式,考查了等差关系的确定,考查了数列的函数特性,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.某公园有个池塘,其形状为直角△ABC,∠C=90°,AB的长为2百米,BC的长为1百米.
(1)若准备养一批供游客观赏的鱼,分别在AB、BC、CA上取点D、E、F,如图(1),使得EF∥AB,EF⊥ED,在△DEF内喂食,求当△DEF的面积取最大值时EF的长;
(2)若准备建造一个荷塘,分别在AB、BC、CA上取点D、E、F,如图(2),建造△DEF连廊(不考虑宽度)供游客休憩,且使△DEF为正三角形,记∠FEC=α,求△DEF边长的最小值及此时α的值.(精确到1米和0.1度)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2-alnx-1,函数F(x)=a-1-$\frac{a}{1+\sqrt{x}}$.
(Ⅰ)如果f(x)在[3,5]上是单调递增函数,求实数a的取值范围;
(Ⅱ)当a=2,x>0且x≠1时,比较$\frac{f(x)}{x-1}$与F(x)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a=($\frac{1}{2}$)${\;}^{\frac{1}{3}}$,b=log${\;}_{\frac{1}{3}}$2,c=log${\;}_{\frac{1}{2}}$3,则(  )
A.a>b>cB.a>c>bC.b>c>aD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-1,x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,把函数g(x)=f(x)-x的零点按从小到大的顺序排列成一个数列{an},则该数列的通项公式为(  )
A.an=$\frac{n-1}{2}$B.an=n-1C.an=(n-1)2D.an=2n-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等差数列{an}的前n项和为Sn,a3=5,S8=64.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:$\frac{1}{{S}_{n-1}}+\frac{1}{{S}_{n+1}}$>$\frac{2}{{S}_{n}}$(n≥2,n∈N)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知α,β是方程x2-x-1=0的两个根,且α<β.数列{an},{bn}满足a1=1,a2=β,an+2=an+1+an,bn=an+1-αan(n∈N*).
(1)求b2-a2的值;
(2)证明:数列{bn}是等比数列;
(3)设c1=1,c2=-1,cn+2+cn+1=cn(n∈N*),证明:当n≥3时,an=(-1)n-1(αcn-2+βcn).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$满足|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{b}$|=1,($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)=0,若对每一确定的$\overrightarrow{b}$,|$\overrightarrow{c}$|的最大值和最小值分别为m、n,则对任意a,m-n的值(  )
A.随|$\overrightarrow{a}$|增大而增大B.随|$\overrightarrow{a}$|增大而减小C.是2D.是1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点是F(c,0),左右顶点分别为A,B,上下顶点分别是C,D,且点P(2a,b)满足PF⊥CF,
(Ⅰ)求椭圆E的离心率,并证明P,B,D三点共线;
(Ⅱ)对于给定的椭圆E,若点R(2a,3c),过点A的直线l与椭圆E相交于另一点Q,当△AQR的面积最大等于9,求直线l的方程.

查看答案和解析>>

同步练习册答案