精英家教网 > 高中数学 > 题目详情
3.下列不等式中,①α∈(0,$\frac{π}{2}$)时,sin2α+$\frac{4}{{{{sin}^2}α}}$≥4;②log2(x2+1)≥1+log2x(x>0);③sinx+cosx≤$\sqrt{2}$;④22x+22y≥2x+y+1恒成立的有(  )
A.①②③B.①②④C.①③④D.②③④

分析 对于①,根据基本不等式等号成立的条件即可判断,
对于②,根据基本不等式和对数的运算性质故可判断,
对于③,sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$),根据三角函数的性质即可判断,
对于④,根据基本不等式和指数函数的运算性质即可判断.

解答 解:对于①,sin2α+$\frac{4}{{{{sin}^2}α}}$≥4,当且仅当sin4α=4时取等号,显然不成立,故①不恒成立,
对于②,∵x2+1≥2x,x>0,∴log2(x2+1)≥log2(2x)=1+log2x,当且仅当x=1时取等号,故恒成立,
对于③,sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$),又sin(x+$\frac{π}{4}$)≤1,故sinx+cosx≤$\sqrt{2}$恒成立,
对于④,22x+22y≥2×2x+y=2x+y+1,故恒成立,
故选:D.

点评 本题考查了函数恒成立的问题,掌握基本不等式,三角函数,对数函数,指数函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知a、b为正实数,且a+2b=3ab,若a+b-c≥0对于满足条件的a,b恒成立,则c的取值范围为(  )
A.(-∞,$1+\frac{{2\sqrt{2}}}{3}$]B.$(-∞,\frac{3}{2}+\sqrt{2}]$C.(-∞,6]D.(-∞,$3+2\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,AB=2,AC=3,∠A=60°,D为线段BC上一点,且2BD=CD,则AD=$\frac{\sqrt{37}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知sin($\frac{π}{2}$-α)=$\frac{5}{13}$,且α是第四象限的角,则tan(2π-α)=(  )
A.-$\frac{12}{5}$B.$\frac{12}{5}$C.±$\frac{12}{5}$D.±$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知cos($\frac{3π}{2}$+α)=-$\frac{3}{5}$,且α是第四象限角,则cos(-3π+α)=$-\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.有下列命题
①命题“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1<3x”;
②命题“若x≠1,则x2-3x+2≠0”的逆否命题是“若x2-3x+2=0,则x=1”
③若函数f(x)=(x+1)(x+a)为偶函数,则a=-1;
④若x>0,y>0且2x+y=1,则$\frac{1}{x}$+$\frac{1}{y}$的最小值是6
⑤设函数f(x)是定义在R上的周期为2的奇函数,当x∈[0,1]时,f(x)=x+1,则f($\frac{3}{2}$)=$\frac{3}{2}$
其中所有正确说法的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设数列{an}的各项都是正数,且对于n∈N*,都有a${\;}_{1}^{3}$+a${\;}_{2}^{3}$+a${\;}_{3}^{3}$+…+a${\;}_{n}^{3}$=S${\;}_{n}^{2}$,其中Sn为数列{an}的前n项和.
(1)求a2
(2)求数列{an}的通项公式;
(3)若bn=3n+(-1)n-1λ•${2^{a_n}}$(λ为非零常数),问是否存在整数λ,使得对任意n∈N*,都有bn+1>bn?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线y2=8x,过点P(2,0)作倾斜角为α=45°的直线l,直线l与抛物线交于A、B两点.
(1)求直线l的参数方程;
(2)求$\frac{1}{{|{AP}|}}$+$\frac{1}{{|{BP}|}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.四棱锥S-ABCD的底面是边长为4$\sqrt{2}$的正方形,且SA=SB=SC=SD=4$\sqrt{5}$,则过点A,B,C,D,S的球的体积为$\frac{500}{3}$π.

查看答案和解析>>

同步练习册答案