精英家教网 > 高中数学 > 题目详情
5.复数z满足:(3-4i)z=1+2i,则z=(  )
A.$-\frac{1}{5}+\frac{2}{5}i$B.$\frac{1}{5}-\frac{2}{5}i$C.$-\frac{1}{5}-\frac{2}{5}i$D.$\frac{1}{5}+\frac{2}{5}i$

分析 利用复数的运算法则、共轭复数的定义即可得出.

解答 解:∵(3-4i)z=1+2i,∴(3+4i)(3-4i)z=(3+4i)(1+2i),∴25z=-5+10i,
则z=-$\frac{1}{5}$+$\frac{2}{5}$i.
故选:A.

点评 本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.一个三角形的两边长是方程2x2-$\sqrt{k}$x+2=0的两根,第三边长为2,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-3,k),$\overrightarrow{a}$•(2$\overrightarrow{a}$-$\overrightarrow{b}$)=0,则实数k的值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=ln({1+2x})+\frac{m}{1+2x}({m∈R})$.
(Ⅰ)若函数f(x)的图象在x轴上方,求m的取值范围;
(Ⅱ)若对任意的正整数n都有${(1+\frac{2}{n})^{n-a}}≥{e^2}$成立,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知点A、B的坐标分别为(2,0)、(-2,0),直线AT、BT交于点T,且它们的斜率之积为常数-λ(λ>0,λ≠1),点T的轨迹以及A、B两点构成曲线C.
(1)求曲线C的方程,并求其焦点坐标;
(2)若0<λ<1,且曲线C上的点到其焦点的最近距离为1.设直线l:y=k(x-1)交曲线C于E、F两点,交x轴于Q点.直线AE、AF分别交直线x=3于点N、M.记线段MN的中点为P,直线PQ的斜率为k′.求证:k•k′为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.方程10sinx=x的根的个数是(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若f(x)=sinα-cosx,则f′(x)等于(  )
A.sinxB.cosxC.cosα+sinxD.2sinα+cosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设n∈N*,函数f(x)=$\frac{lnx}{{x}^{n}}$,函数g(x)=$\frac{{e}^{x}}{{x}^{n}}$,(x>0)
(1)当n=1时,写出函数y=f(x)的零点个数;
(2)若函数 y=f(x)与函数 y=g(x)的图象分别位于直线y=1的两侧,求n的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某公司所生产的一款设备的维修费用y(单位:万元)和使用年限x(单位:年)之间的关系如表所示,由资料可知y对x呈线性相关关系,
x23456
y2238556570
(Ⅰ)求线性回归方程;
(Ⅱ)估计使用年限为10年时,维修费用是多少?
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

同步练习册答案