精英家教网 > 高中数学 > 题目详情
12.已知向量$\overrightarrow a$=(-2,2),向量$\overrightarrow b$=(2,1),则向量$\overrightarrow a$在向量$\overrightarrow b$方向上的投影为$\frac{{-2\sqrt{5}}}{5}$.

分析 求出$\overrightarrow{a}•\overrightarrow{b}$和|$\overrightarrow{b}$|的值,而可以得到 $\overrightarrow{a}$在 $\overrightarrow{b}$方向上的投影为$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{b}|}$,从而得出该投影的值.

解答 解:向量$\overrightarrow a$=(-2,2),向量$\overrightarrow b$=(2,1),$\overrightarrow a$•$\overrightarrow b$=-2,|$\overrightarrow{b}$|=$\sqrt{5}$;
∴$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为:|$\overrightarrow{a}$|cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=|$\overrightarrow{a}$|•$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{b}|}$=$\frac{-2}{\sqrt{5}}$=$-\frac{2\sqrt{5}}{5}$.
故答案为:$-\frac{2\sqrt{5}}{5}$.

点评 考查向量数量积的坐标运算,能根据向量坐标求向量长度,以及投影的定义及计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A={x|1≤x≤3},B={x|log2x>1}.
(1)分别求A∩B,(∁RB)∪A;
(2)已知集合C={x|1<x<a},若C⊆A,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=$\frac{1}{2}$AA1=1,D是棱AA1上的点,DC1⊥BD.
(Ⅰ)求证:D为AA1中点;
(Ⅱ)求直线BC1与平面BDC所成角正弦值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知命题p:?x∈(0,+∞),sinx=x+$\frac{1}{x}$,命题q:?x∈R,πx<1,则下列为真命题的是(  )
A.p∧(?q)B.(?p)∧(?q)C.(?p)∧qD.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某学校在平面图为矩形的操场ABCD内进行体操表演,其中AB=40,BC=16,O为AB上一点,且BO=8,线段OC、OD、MN为表演队列所在位置(M,N分别在线段OD、OC上),点P为领队位置,且P到BC、CD的距离均为12,记OM=d,我们知道当△OMN面积最小时观赏效果最好.
(1)当d为何值时,P为队列MN的中点?
(2)怎样安排M的位置才能使观赏效果最好?求出此时d的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设实数x,y满足约束条件$\left\{\begin{array}{l}y-x≤0\\ x≤2\\ y≥\frac{1}{2}\end{array}\right.$,则$2x+\frac{1}{y}$的最小值为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$2\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某公司对新招聘的40名业务人员迸行业务培训,现按新业务员的年龄(单位:岁)进行分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.
(1)培训中有一个传球活动:音乐响起,按特定顺序开始第1次传一个球,音乐停时,球在谁手,谁就表演一个节目,表演完毕后,从表演者开始下一次传球,如此进行3次,若以频率为概率,且停音乐是随机的,求至少有2次表演者的年龄在[20,30)的概率;
(2)培训前决定在年龄在[35,45]的新业务员中任意选出3名小组长,设年龄在[40,45]中选取的人数为X,求随机变量X的分布列及数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=\frac{a}{3}{x^3}+\frac{b}{2}{x^2}+cx(a≠0)$与g(x)=xlnx.
(1)若f(x)的减区间是(1,3),且f'(x)的最小值为-1求f(x)的解析式;
(2)当a=1,c=2时,若函数ϕ(x)=f'(x)+g(x)有零点,求实数b的最大值.

查看答案和解析>>

同步练习册答案