精英家教网 > 高中数学 > 题目详情
已知C为线段AB上一点P为直线AB外一点I为PC上一点,满足|
PA
|-|
PB
|=4,|
PA
-
PB
|=10,
PA
PC
|PA|
=
PB
PC
|PB|
,且
BI
=
BA
+λ(
AC
|AC|
+
AP
|AP|
)(λ>0),则
BI
BA
|BA|
的值为
 
考点:向量在几何中的应用
专题:平面向量及应用
分析:由已知得PC为∠APB的角平分线,I是三角形ABP的内心,|AB|=10,
BI
BA
|BA|
表示的是
BI
BA
上的投影长度.由此能求出
BI
BA
|BA|
的值.
解答: 解:∵
PA
PC
|PA|
=
PB
PC
|PB|

∴∠APC=∠CPB,即PC为∠APB的角平分线,
BI
=
BA
+λ(
AC
|AC|
+
AP
|AP|
)(λ>0),
∴I在∠BAP的角平分线上,即I是三角形ABP的内心,
∵|
PA
-
PB
|=10,∴|AB|=10,.
BI
BA
|BA|
表示的是
BI
BA
上的投影长度.
过I做IK垂直于AB于K,
则由圆的切线性质和题意可得|AK|-|BK|=4,|AK|+|BK|=10,
解得|BK|=3即所求,
BI
BA
|BA|
的值为3.
故答案为:3.
点评:本题考查向量在几何中的应用,本题解题的关键是正确理解条件中所给的几个关系式,注意把条件转化成我们所熟悉的条件,本题是一个比较好的题目,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用更相减损术求440与556的最大公约数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(-2,-3)和以Q为圆心的圆(x-m+1)2+(y-3m)2=4.
(1)求证:圆心Q在过点P的定直线上;
(2)当m为何值时,以PQ为直径的圆过原点?

查看答案和解析>>

科目:高中数学 来源: 题型:

过定点M(1,2)作两条相互垂直的直线l1、l2,设原点到直线l1、l2的距离分别为d1、d2,则d1+d2的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
418
•(
8
 
1
2
•(
1
3
 -
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
①任何一条直线都有唯一的倾斜角;
②任何一条直线都有唯一的斜率;
③倾斜角为90°的直线不存在;
④倾斜角为0°的直线只有一条.
其中正确的有(  )
A、0个B、1个C、2个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列四个命题中,真命题的个数是
 

①?x∈R,x2+x+3>0;
②?x∈Q,
1
3
x2+
1
2
x+1是有理数;
③?α,β∈R,使sin(α+β)=sinα+sinβ;
④?x0,y0∈Z,使3x0-2y0=10.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x-2,求f(0)、f(1)、f(a)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:tan(a-7π)=2,则cos2a-sin2a=
 

查看答案和解析>>

同步练习册答案