精英家教网 > 高中数学 > 题目详情

若椭圆的离心率为,焦点在轴上,且长轴长为10,曲线上的点与椭圆的两个焦点的距离之差的绝对值等于4.
(1)求椭圆的标准方程;
(2)求曲线的方程。

(1)  ;(2) 

解析试题分析:(1)因为椭圆的焦点在x轴上,所以设椭圆方程为,因为椭圆的离心率为,且长轴长为10,所以,又,所以 所以椭圆的标准方程为
(2)因为曲线上的点与椭圆的两个焦点的距离之差的绝对值等于4,所以曲线为焦点在x轴上的双曲线,设曲线,则焦距为6,,所以
所以曲线的方程为
考点:本题考查椭圆的标准方程;双曲线的标准方程;椭圆的简单性质;双曲线的简单性质。
点评:本题考查椭圆、双曲线的性质和应用,解题时要注意公式的灵活运用,注意区分椭圆和双曲线的性质以及标准方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知抛物线与直线交于两点.
(Ⅰ)求弦的长度;
(Ⅱ)若点在抛物线上,且的面积为,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知抛物线的焦点为,准线为,过上一点P作抛物线的两切线,切点分别为A、B,
(1)求证:
(2)求证:A、F、B三点共线;
(3)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)已知中心在原点O,焦点在轴上的椭圆C的离心率为,点A,B分别是椭圆C的长轴、短轴的端点,点O到直线AB的距离为

(1)求椭圆C的标准方程;
(2)已知点E(3,0),设点P、Q是椭圆C上的两个动点,满足EP⊥EQ,
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的焦点,长轴长6,设直线交椭圆两点,求线段的中点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设双曲线与直线交于两个不同的点,求双曲线的离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

斜率为k的直线过点P(0,1),与双曲线交于A,B两点. 
(1)求实数k的取值范围;
(2)若以AB为直径的圆过坐标原点,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的左、右顶点分别为,点在椭圆上且异于两点,为坐标原点.
(1)若直线的斜率之积为,求椭圆的离心率;
(2)对于由(1)得到的椭圆,过点的直线轴于点,交轴于点,若,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)已知,且点A和点B都在椭圆内部,
(1)请列出有序数组的所有可能结果;
(2)记“使得成立的”为事件A,求事件A发生的概率。

查看答案和解析>>

同步练习册答案