精英家教网 > 高中数学 > 题目详情
15.在平面四边形ABCD中,点E,F分别是边AD,BC的中点,且$AB=\sqrt{2}$,EF=1,$CD=\sqrt{3}$.若$\overrightarrow{AD}•\overrightarrow{BC}=15$,则$\overrightarrow{AC}•\overrightarrow{BD}$的值为$\frac{31}{2}$.

分析 画出图形,结合图形,先求出$\overrightarrow{AB}$•$\overrightarrow{DC}$的值,再利用$\overrightarrow{AD}$•$\overrightarrow{BC}$=15,即可求出$\overrightarrow{AC}$•$\overrightarrow{BD}$的值.

解答 解:如图所示,
设AB∩DC=O,∵$\overrightarrow{AB}$=$\overrightarrow{AE}$+$\overrightarrow{EF}$+$\overrightarrow{EB}$=$\overrightarrow{EF}$+$\frac{\overrightarrow{AD}-\overrightarrow{BC}}{2}$,$\overrightarrow{DC}$=$\overrightarrow{DE}$+$\overrightarrow{EF}$+$\overrightarrow{FC}$=$\overrightarrow{EF}$+$\frac{\overrightarrow{BC}-\overrightarrow{AD}}{2}$,
两式相加得$\overrightarrow{EF}$=$\frac{\overrightarrow{AB}+\overrightarrow{DC}}{2}$;
∵AB=$\sqrt{2}$,EF=1,CD=$\sqrt{3}$,
平方得1=$\frac{2+3+2\overrightarrow{AB}•\overrightarrow{DC}}{4}$;
∴$\overrightarrow{AB}$•$\overrightarrow{DC}$=-$\frac{1}{2}$;
又∵$\overrightarrow{AD}$•$\overrightarrow{BC}$=15,
即($\overrightarrow{OD}$-$\overrightarrow{OA}$)•($\overrightarrow{OC}$-$\overrightarrow{OB}$)=15;
∴$\overrightarrow{OD}$•$\overrightarrow{OC}$-$\overrightarrow{OD}$•$\overrightarrow{OB}$-$\overrightarrow{OA}$•$\overrightarrow{OC}$+$\overrightarrow{OA}$•$\overrightarrow{OB}$=15,
∴$\overrightarrow{OC}$•$\overrightarrow{OD}$+$\overrightarrow{OA}$•$\overrightarrow{OB}$=15+$\overrightarrow{OD}$•$\overrightarrow{OB}$+$\overrightarrow{OA}$•$\overrightarrow{OC}$,
∴$\overrightarrow{AC}$•$\overrightarrow{BD}$=($\overrightarrow{OC}$-$\overrightarrow{OA}$)•($\overrightarrow{OD}$-$\overrightarrow{OB}$)=$\overrightarrow{OC}$•$\overrightarrow{OD}$-$\overrightarrow{OC}$•$\overrightarrow{OB}$-$\overrightarrow{OA}$•$\overrightarrow{OD}$+$\overrightarrow{OA}$•$\overrightarrow{OB}$
=(15+$\overrightarrow{OD}$•$\overrightarrow{OB}$+$\overrightarrow{OA}$•$\overrightarrow{OC}$)-$\overrightarrow{OC}$•$\overrightarrow{OB}$-$\overrightarrow{OA}$•$\overrightarrow{OD}$
=15+$\overrightarrow{OD}$•($\overrightarrow{OB}$-$\overrightarrow{OA}$)+$\overrightarrow{OC}$•($\overrightarrow{OA}$-$\overrightarrow{OB}$)
=15+$\overrightarrow{OD}$•$\overrightarrow{AB}$+$\overrightarrow{OC}$•$\overrightarrow{BA}$
=15+$\overrightarrow{AB}$•($\overrightarrow{OD}$-$\overrightarrow{OC}$)
=15+$\overrightarrow{AB}$•$\overrightarrow{CD}$
=15-$\overrightarrow{AB}$•$\overrightarrow{DC}$
=15-(-$\frac{1}{2}$)
=$\frac{31}{2}$.
故答案为:$\frac{31}{2}$.

点评 本题考查了两个向量的加减运算的应用问题,也考查了平面向量的几何意义以及平面向量的数量积的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若函数f(x)对?x1,x2∈(0,+∞),有f(x1)>0,f(x2)>0,且f(x1)+f(x2)<f(x1+x2)成立,则称函数f(x)为“守法函数”.给出下列四个函 数:①y=x2     ②y=log2(x+1)③y=2x-1      ④y=cosx ⑤y=$\frac{1}{x}$
其中“守法函数”是①③.(写出所有符合要求的函数的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在平面直角坐标系xOy中,动点P的坐标满足方程(x-1)2+(y-3)2=4,则点P的轨迹经过(  )
A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}为等差数列,其前n项和为Sn,且$1+\frac{{{a_{11}}}}{{{a_{10}}}}$<0,若Sn存在最大值,则满足Sn>0的n的最大值为19.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点P在曲线C:y2=4-2x2上,点$A({0,-\sqrt{2}})$,则|PA|的最小值为(  )
A.$2-\sqrt{2}$B.$2+\sqrt{2}$C.$2\sqrt{2}$D.$\sqrt{2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{27}{2}$B.15C.$\frac{21}{2}$D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的首项为a1=1,公差d≠0,其中a2,a5,a14成等比数列.
(I)求数列{an}的通项;
(Ⅱ)设cn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,在多面体ABC-A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,△A1BC是正三角形,B1C1∥BC,B1C1=$\frac{1}{2}$BC.
(Ⅰ)求证:面A1AC⊥面ABC;
(Ⅱ)求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.曲线$y=\frac{sinx}{x}$在点M(-π,0)处的切线方程为x-πy+π=0.

查看答案和解析>>

同步练习册答案