精英家教网 > 高中数学 > 题目详情
4.如图,在多面体ABC-A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,△A1BC是正三角形,B1C1∥BC,B1C1=$\frac{1}{2}$BC.
(Ⅰ)求证:面A1AC⊥面ABC;
(Ⅱ)求该几何体的体积.

分析 (Ⅰ)推导出A1A⊥AC,A1A⊥AB,从而A1A⊥平面ABC,由此能证明面A1AC⊥面ABC.
(Ⅱ)该几何体的体积:V=${V}_{C-{A}_{1}{B}_{1}BA}+{V}_{C-{A}_{1}{B}_{1}{C}_{1}}$,由此能求出结果.

解答 证明:(Ⅰ)∵在多面体ABC-A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,
△A1BC是正三角形,B1C1∥BC,B1C1=$\frac{1}{2}$BC,
∴A1C=A1B=$\sqrt{2}$,1A=AC=1,
满足${A}_{1}{A}^{2}+A{C}^{2}={A}_{1}{C}^{2}$,
∴A1A⊥AC,
又A1A⊥AB,且AB∩AC=A,∴A1A⊥平面ABC,
∵A1A?平面A1AC,∴面A1AC⊥面ABC.
解:(Ⅱ)依题意得该几何体的体积:
V=${V}_{C-{A}_{1}{B}_{1}BA}+{V}_{C-{A}_{1}{B}_{1}{C}_{1}}$,
=$\frac{1}{3}×{S}_{{A}_{1}{B}_{1}BA}×CA$+$\frac{1}{3}×{S}_{{△A}_{1}{B}_{1}{C}_{1}}×{A}_{1}A$
=$\frac{1}{3}×1×1+\frac{1}{3}×(\frac{1}{2}×\frac{\sqrt{2}}{2}×\frac{\sqrt{2}}{2})×1$
=$\frac{5}{12}$.

点评 本题考查面面垂直的证明,考查几何体的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知数列{an}中,a1=a(a为常数),其前n项和Sn满足Sn=$\frac{n({a}_{n}+{a}_{3}-2)}{2}$.
(1)求数列{an}的通项公式;
(2)若Sn≥S10对一切n∈N*都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面四边形ABCD中,点E,F分别是边AD,BC的中点,且$AB=\sqrt{2}$,EF=1,$CD=\sqrt{3}$.若$\overrightarrow{AD}•\overrightarrow{BC}=15$,则$\overrightarrow{AC}•\overrightarrow{BD}$的值为$\frac{31}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若直线l的方向向量为$\overrightarrow{a}$,平面α的法向量为$\overrightarrow{n}$,则满足l∥α的向量$\overrightarrow{a}$与$\overrightarrow{n}$可能为(  )
A.$\overrightarrow{a}$=(1,3,5),$\overrightarrow{n}$=(1,0,1)B.$\overrightarrow{a}$=(1,0,0),$\overrightarrow{n}$=(-2,0,0)
C.$\overrightarrow{a}$=(1,-1,3),$\overrightarrow{n}$=(0,3,1)D.$\overrightarrow{a}$=(0,2,1),$\overrightarrow{n}$=(-1,0,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.点P(1,-2,3)在空间直角坐标系中,关于坐标平面xOy的对称点为P′,则点P与P′间的距离|PP′|为(  )
A.$\sqrt{14}$B.6C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中既是奇函数,又在定义域上为增函数的是(  )
A.f(x)=x+1B.$f(x)=-\frac{1}{x}$C.f(x)=x2D.f(x)=x3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=|lnx|,a>b>0,f(a)=f(b),则$\frac{{{a^2}+{b^2}}}{a-b}$的最小值等于(  )
A.$2\sqrt{2}$B.$\sqrt{5}$C.$2+\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,$AP=1,AD=\sqrt{3}$,面PAB⊥面ABCD,PA⊥AB,E为PD的中点.
(1)证明:PB∥平面AEC;
(2)若底面ABCD为矩形,三棱椎P-ABD的体积$V=\frac{{\sqrt{3}}}{4}$,求二面角P-BC-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,角A,B,C的对边为a,b,c,b=3,c=2$\sqrt{6}$,cosB=$\frac{\sqrt{6}}{3}$,则a等于(  )
A.3B.5C.5或3D.5或$\sqrt{3}$

查看答案和解析>>

同步练习册答案