| A. | $2\sqrt{2}$ | B. | $\sqrt{5}$ | C. | $2+\sqrt{3}$ | D. | $2\sqrt{3}$ |
分析 根据对数函数的性质,求出ab=1,然后利用基本不等式求$\frac{{{a^2}+{b^2}}}{a-b}$的最小值.
解答
解:因为f(x)=|lnx|,f(a)=f(b),所以|lna|=|lnb|,
即lna=±lnb,
又a>b>0,所以lna=-lnb,ab=1,
所以$\frac{{{a^2}+{b^2}}}{a-b}=\frac{{{{(a-b)}^2}+2ab}}{a-b}=(a-b)+\frac{2}{a-b}≥2\sqrt{2}$,当且仅当ab=1且$a-b=\frac{2}{a-b}$时取等号,
所以$\frac{{{a^2}+{b^2}}}{a-b}$的最小值是$2\sqrt{2}$,
故选A.
点评 本题主要考查基本不等式的应用,利用对数函数的图象和性质求出ab=1是解决本题的关键,注意基本不等式成立的条件.
科目:高中数学 来源: 题型:选择题
| A. | 第一、二象限 | B. | 第二、三象限 | C. | 第三、四象限 | D. | 第一、四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com