精英家教网 > 高中数学 > 题目详情
18.若函数f(x)=-lnx+ax2+bx-a-2b有两个极值点x1,x2,其中-$\frac{1}{2}$<a<0,b>0,且f(x2)=x2>x1,则方程2a[f(x)]2+bf(x)-1=0的实根个数为(  )
A.3B.4C.5D.6

分析 由函数f(x)=-lnx+ax2+bx-a-2b有两个极值点x1,x2,可得2ax2+bx-1=0有两个不相等的正根,必有△=b2+8a>0.而方程2a(f(x))2+bf(x)-1=0的△1=△>0,可知此方程有两解且f(x)=x1或x2.再分别讨论利用平移变换即可解出方程f(x)=x1或f(x)=x2解的个数.

解答 解:解:∵函数f(x)=-lnx+ax2+bx-a-2b有两个极值点x1,x2
f′(x)=$\frac{2a{x}^{2}+bx-1}{x}$,
即为2ax2+bx-1=0有两个不相等的正根,∴△=b2+8a>0
解得,x=$\frac{-b±\sqrt{{b}^{2}+8a}}{4a}$,
∵x1<x2,-$\frac{1}{2}$<a<0,b>0,且,b>0
∴x1=$\frac{-b+\sqrt{{b}^{2}+8a}}{4a}$,${x}_{2}=\frac{-b-\sqrt{{b}^{2}+8a}}{4a}$,
而方程2a(f(x))2+bf(x)-1=0的△1=△>0,
∴此方程有两解且f(x)=x1或x2.,即有0<x1<x2,:∵x1,x2>0又${x}_{1}•{x}_{2}=-\frac{1}{2a}>1$.
∴x2>1,∵f(1)=-b<0∴f(x1)<0,f(x2)>0.
①根据f′(x)画出f(x)的简图,
∵f(x2)=x2,由图象可知方程f(x)=x2有两解,方程f(x)=x1有三解.
综上①②可知:方程f(x)=x1或f(x)=x2共有5个实数解.
即关于x的方程2a(f(x))2+bf(x)-1=0的共有5不同实根.
故选:C.

点评 本题综合考查了利用导数研究函数得单调性、极值及方程解得个数、平移变换等基础知识,考查了图象平移的思想方法、推理能力、计算能力、分析问题和解决问题的能力.属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知全集U=R,集合A={x|1≤2x+9<5},则∁UA(-∞,-4)∪[-2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.四面体ABCD的四个顶点都在某个球O的表面上,△BCD是边长为3$\sqrt{3}$的等边三角形,当A在球O表面上运动时,四面体ABCD所能达到的最大体积为$\frac{81\sqrt{3}}{4}$,则四面体OBCD的体积为(  )
A.$\frac{81\sqrt{3}}{8}$B.$\frac{27\sqrt{3}}{4}$C.9$\sqrt{3}$D.$\frac{27\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=$\sqrt{1-x}$+x2的定义域为{x|x≤1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知△ABC中,a2=b(b+c),B=15°,则角C=135°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题中错误的是(  )
A.如果平面α⊥γ,β⊥γ,α∩β=l,那么l⊥γ
B.如果平面α⊥β,那么平面α 中一定存在直线平行于平面β
C.如果平面 α不垂直于平面β,那么平面α 内一定不存在直线垂直于平面β
D.如果平面α⊥β,那么平面 α内所有直线都垂直于平面β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知集合M={x|2x2-3x-2=0},集合N={x|ax=1},若N?M,那么a的值是0或-2或$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知p:|1-$\frac{x-1}{3}}$|≤2,q:1-m≤x≤1+m(m>0),若¬p是¬q的充分而不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设数列{an}满足对任意的n∈N*,Pn(n,an)满足$\overrightarrow{{P_n}{P_{n+1}}}$=(1,2),且a1+a2=4,则数列{$\frac{1}{{{a_n}•{a_{n+1}}}}$}的前n项和Sn为$\frac{n}{2n+1}$.

查看答案和解析>>

同步练习册答案