分析 数列{an}满足对任意的n∈N*,Pn(n,an)满足$\overrightarrow{{P_n}{P_{n+1}}}$=(1,2),可得an+1-an=2,利用等差数列的通项公式可得an,再利用“裂项求和”方法即可得出.
解答 解:∵数列{an}满足对任意的n∈N*,Pn(n,an)满足$\overrightarrow{{P_n}{P_{n+1}}}$=(1,2),
∴an+1-an=2,∴数列{an}是公差为2的等差数列.
∵a1+a2=4,∴2a1+2=4,解得a1=1.
∴an=1+2(n-1)=2n-1.
∴$\frac{1}{{{a_n}•{a_{n+1}}}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.
∴数列{$\frac{1}{{{a_n}•{a_{n+1}}}}$}的前n项和Sn为=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$=$\frac{n}{2n+1}$.
故答案为:$\frac{n}{2n+1}$.
点评 本题考查了等差数列的通项公式、“裂项求和”方法、向量坐标运算性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 满意度 评分分组 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
| 频数 | 2 | 8 | 14 | 10 | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 8 | C. | 9 | D. | 11 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com