精英家教网 > 高中数学 > 题目详情
13.若对于曲线f(x)=-ex-x上任意点处的切线l1,总存在g(x)=2ax+sinx上一点处的切线l2,使得l1⊥l2,则实数a的取值范围是[0,$\frac{1}{2}$].

分析 求得f(x)的导数,设(x1,y1)为f(x)上的任一点,可得切线的斜率k1,求得g(x)的导数,设g(x)图象上一点(x2,y2)可得切线l2的斜率为k2,运用两直线垂直的条件:斜率之积为-1,分别求y1=2a+cosx2的值域A,y2═$\frac{1}{{e}^{{x}_{1}}+1}$值域B,由题意可得B⊆A,可得a的不等式,可得a的范围.

解答 解:f(x)=-ex-x的导数为f′(x)=-ex-1,
设(x1,y1)为f(x)上的任一点,
则过(x1,y1)处的切线l1的斜率为k1=-ex1-1,
g(x)=2ax+sinx的导数为g′(x)=2a+cosx,
过g(x)图象上一点(x2,y2)处的切线l2的斜率为k2=2a+cosx2
由l1⊥l2,可得(-ex1-1)•(2a+cosx2)=-1,
即2a+cosx2=$\frac{1}{{e}^{{x}_{1}}+1}$,
任意的x1∈R,总存在x2∈R使等式成立.
则有y1=2a+cosx2的值域为A=[2a-1,2a+1].
y2=$\frac{1}{{e}^{{x}_{1}}+1}$的值域为B=(0,1),
有B⊆A,即(0,1)⊆[2a-1,2a+1].
即$\left\{\begin{array}{l}{2a-1≤0}\\{2a+1≥1}\end{array}\right.$,
解得0≤a≤$\frac{1}{2}$.
故答案为:[0,$\frac{1}{2}$].

点评 本题考查导数的运用:求切线的斜率,考查两直线垂直的条件:斜率之积为-1,考查任意存在性问题的解法,注意运用转化思想和值域的包含关系,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.下列命题中错误的是(  )
A.如果平面α⊥γ,β⊥γ,α∩β=l,那么l⊥γ
B.如果平面α⊥β,那么平面α 中一定存在直线平行于平面β
C.如果平面 α不垂直于平面β,那么平面α 内一定不存在直线垂直于平面β
D.如果平面α⊥β,那么平面 α内所有直线都垂直于平面β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,三个边长为2的等边三角形有一条边在同一条直线上,边GD上有10个不同的点P1,P2,P3…P10,则$\overrightarrow{AF}$•($\overrightarrow{A{P_1}$+$\overrightarrow{A{P_2}}$+$\overrightarrow{A{P_3}}$+…+$\overrightarrow{A{P_{10}}}$)=180.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设集合A={x|x2-x<0},B={x|0<x<3},那么“m∈A”是“m∈B”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设数列{an}满足对任意的n∈N*,Pn(n,an)满足$\overrightarrow{{P_n}{P_{n+1}}}$=(1,2),且a1+a2=4,则数列{$\frac{1}{{{a_n}•{a_{n+1}}}}$}的前n项和Sn为$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设p:2x2-x-1≤0,q:x2-(2a-1)x+a(a-1)≤0,若非q是非p的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若一个四棱锥底面为正方形,顶点在底面的射影为正方形的中心,且该四棱锥的体积为9,高为3,则其外接球的表面积为(  )
A.B.$\frac{49}{4}π$C.16πD.$\frac{81}{4}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设A={x|1<x<2},B={x|x<a},若A?B,则实数a的取值范围是(  )
A.a≥2B.a≤2C.a>2D.a<2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.将函数f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象向左平移$\frac{π}{6}$个单位长度后,所得函数g(x)为奇函数,则函数f(x)在[0,$\frac{π}{2}$]上的最小值(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案