精英家教网 > 高中数学 > 题目详情
16.双曲线$C:\frac{x^2}{9}-\frac{y^2}{16}=1$的渐近线方程为y=±$\frac{4}{3}$x;某抛物线的焦点与双曲线C的右焦点重合,则此抛物线的标准方程为y2=20x.

分析 由条件利用双曲线、抛物线的简单性质,得出结论.

解答 解:双曲线$C:\frac{x^2}{9}-\frac{y^2}{16}=1$的渐近线方程为 y=±$\frac{4}{3}$x,
由于双曲线$C:\frac{x^2}{9}-\frac{y^2}{16}=1$的右焦点为(5,0),设此抛物线的标准方程为y2=2px,
则$\frac{p}{2}$=5,p=10,故抛物线的方程为y2=20x,
故答案为:$y=±\frac{4}{3}x;\;\;{y^2}=20x$.

点评 本题主要考查双曲线、抛物线的简单性质的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年辽宁大连十一中高一下学期段考二试数学(文)试卷(解析版) 题型:选择题

样本的平均数为,样本的平均数为,那么样本的平均数为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.用一个边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,现将半径为$\sqrt{2}$的球体放置于蛋巢上,则球体球心与蛋巢底面的距离为(  )
A.$\frac{\sqrt{2}+2}{2}$B.$\frac{\sqrt{6}+\sqrt{2}}{2}$C.$\frac{\sqrt{10}+\sqrt{2}}{2}$D.$\frac{\sqrt{10}-\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,三棱柱ABC-A1B1C1中,BA⊥平面AA1C1C,AB=2$\sqrt{2}$,AA1=AC=4,∠A1C1C=60°,D、E分别为A1C,AB1的中点.
(Ⅰ)求证:DE∥平面ABC;
(Ⅱ)求点B到平面AB1C的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,在边长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在底面ABCD上移动,且满足B1P⊥D1E,则线段B1P的长度的最大值为(  )
A.$\frac{{4\sqrt{5}}}{5}$B.2C.$2\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD,底面ABCD是边长为2的菱形,∠BCD=120°,M为侧棱PD的三等分点(靠近D点),O为AC,BD的交点,且PO⊥面ABCD,PC=2.
(1)若在棱PD上存在一点N,且BN∥面AMC,确定点N的位置,并说明理由;
(2)求三棱锥A-PMC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1的交点,已知AA1=AB=1,∠BAD=60°.
(1)求证:平面A1BC1⊥平面B1BDD1
(2)求点O到平面BC1D的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,矩形ACFE⊥底面ABCD,底面ABCD为等腰梯形,且AB∥CD,AB=2AD=2CD=2CF.
(1)求证:BC⊥平面ACFE;
(2)当点M在线段EF上运动时,求平面MAB与平面FCB所成锐二面角余弦的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m,n∈[-1,1],m+n≠0 时,有$\frac{f(m)+f(n)}{m+n}>0$.
(1)求证:f(x)在[-1,1]上为增函数;
(2)求不等式$f(x+\frac{1}{2})<f(1-x)$的解集;
(3)若$f(x)≤{t^2}+t-\frac{1}{{{{cos}^2}α}}-2tanα-1$对所有$x∈[-1,1],α∈[-\frac{π}{3},\frac{π}{4}]$恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案