精英家教网 > 高中数学 > 题目详情
5.如图,三棱柱ABC-A1B1C1中,BA⊥平面AA1C1C,AB=2$\sqrt{2}$,AA1=AC=4,∠A1C1C=60°,D、E分别为A1C,AB1的中点.
(Ⅰ)求证:DE∥平面ABC;
(Ⅱ)求点B到平面AB1C的距离.

分析 (Ⅰ)推导出DE∥CB,由此能证明DE∥平面ABC.
(Ⅱ)取AA1的中点为F,连结CF,由${V}_{C-AB{B}_{1}}={V}_{B-A{B}_{1}C}$,能求出点B到平面AB1C的距离.

解答 证明:(Ⅰ)E为AB1的中点,即E为AB1与A1B的交点,
又D为A1C的中点,∴DE∥CB,
∵DE?平面ABC,CB?平面ABC,
∴DE∥平面ABC.
解:(Ⅱ)取AA1的中点为F,连结CF,
∵AA1=AC=4,∠A1C1C=60°,得△ACA1为正三角形,
∴CF⊥AA1,且CF=2$\sqrt{3}$,
∵BA⊥平面AA1C1C,∴BA⊥CF,
∴CF⊥平面ABB1A1
在直角△B1A1C中,A1B1=2$\sqrt{2}$,A1C=4,则B1C=2$\sqrt{6}$,
在等腰△AB1C中,$A{B}_{1}={B}_{1}C=2\sqrt{6}$,AC=4,
∴${S}_{△A{B}_{1}C}$=4$\sqrt{5}$,
设点B到平面AB1C的距离为h,
∵${V}_{C-AB{B}_{1}}={V}_{B-A{B}_{1}C}$,
∴$\frac{1}{3}×\frac{1}{2}×AB×B{B}_{1}×CF=\frac{1}{3}×{S}_{△A{B}_{1}C}×h$,
解得h=$\frac{2\sqrt{30}}{5}$,
∴点B到平面AB1C的距离为$\frac{2\sqrt{30}}{5}$.

点评 本题考查线面平行的证明,考查点到平面的距离的求法,是中档题,解题时要认真审题,注意等体积法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年辽宁大连十一中高一下学期段考二试数学(文)试卷(解析版) 题型:填空题

=(-8,1),=(3,4),则方向上的射影是

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=$\frac{1}{2}$CD=2,点M是线段EC的中点.
(1)求证:BM∥平面ADEF;
(2)求证:平面BDE⊥平面BEC;
(3)求平面BDM与平面ABF所成的角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源:2017届重庆市高三文上适应性考试一数学试卷(解析版) 题型:解答题

某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕的成本为50元,然后以每个100元的价格出售,如果当天卖不完,剩下的蛋糕作垃圾处理.现需决策此蛋糕店每天应该制作几个生日蛋糕,为此搜集并整理了100天生日蛋糕的日需求量(单位:个),得到如图所示的柱状图,以100天记录的各需求量的频率作为每天各需求量发生的概率.若蛋糕店一天制作17个生日蛋糕.

(1)求当天的利润(单位:元)关于当天需求量(单位:个,)的函数解析式;

(2)求当天的利润不低于750元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,正方形ACDE与等腰直角△ACB所在的平面互相垂直,且AC=BC=2,∠ACB=90°,F、G分别是线段AE、BC的中点,求
(1)求三棱锥C-EFG的体积;
(2)AD与GF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知斜三棱柱ABC-A1B1C1中,底面ABC是等边三角形,侧面BB1C1C是菱形,∠B1BC=60°.
(Ⅰ)求证:BC⊥AB1
(Ⅱ)若AB=a,AB1=$\frac{\sqrt{6}}{2}$a,求三棱锥C-ABB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.双曲线$C:\frac{x^2}{9}-\frac{y^2}{16}=1$的渐近线方程为y=±$\frac{4}{3}$x;某抛物线的焦点与双曲线C的右焦点重合,则此抛物线的标准方程为y2=20x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知边长为3的正三角形ABC的三个顶点都在半径为2的球O的球面上,则点O到平面ABC的距离为(  )
A.1B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)在x=x0处导数存在,若p:f′(x0)=0;q:x=x0是f(x)的极值点,则p是q的(  )
A.充分不必要条件B.充要条件
C.必要不充条件D.既非充分条件也非必要条件

查看答案和解析>>

同步练习册答案